25道RabbitMQ面试题含答案(很全)

1. 什么是RabbitMQ

RabbitMQ是一个开源的消息队列系统,它使用AMQP(高级消息队列协议)标准。RabbitMQ的主要目标是提供可靠的消息传递,确保消息的可靠性和顺序性,同时提供灵活的路由和消息确认机制。

RabbitMQ基于AMQP协议工作,它通过消息的发布/订阅模式实现消息的传递。主要包括三个角色:生产者(Producer)、交换机(Exchange)和队列(Queue)。生产者负责生成消息,交换机负责接收生产者的消息并根据指定的规则路由到队列,而队列则负责存储这些消息,等待消费者(Consumer)来消费。

2. RabbitMQ支持哪些协议?

RabbitMQ支持AMQP协议,也支持MQTT、STOMP等其他协议。

3. 解耦、异步、削峰是什么?

解耦:A 系统发送数据到 BCD 三个系统,通过接口调用发送。如果 E 系统也要这个数据呢?那如果 C 系统现在不需要了呢?A 系统负责人几乎崩溃…A 系统跟其它各种乱七八糟的系统严重耦合, A 系统产生一条比较关键的数据,很多系统都需要 A 系统将这个数据发送过来。如果使用 MQ,A系统产生一条数据,发送到 MQ 里面去,哪个系统需要数据自己去 MQ 里面消费。如果新系统需要数据,直接从 MQ 里消费即可;如果某个系统不需要这条数据了,就取消对 MQ 消息的消费即可。这样下来,A 系统压根儿不需要去考虑要给谁发送数据,不需要维护这个代码,也不需要考虑人家是否调用成功、失败超时等情况。

就是一个系统或者一个模块,调用了多个系统或者模块,互相之间的调用很复杂,维护起来很麻烦。但是其实这个调用是不需要直接同步调用接口的,如果用 MQ 给它异步化解耦。

异步:A 系统接收一个请求,需要在自己本地写库,还需要在 BCD 三个系统写库,自己本地写库要 3ms,BCD 三个系统分别写库要 300ms、450ms、200ms。最终请求总延时是 3 + 300 + 450 + 200 = 953ms,接近 1s,用户感觉搞个什么东西,慢死了慢死了。用户通过浏览器发起请求。如果使用 MQ,那么 A 系统连续发送 3 条消息到 MQ 队列中,假如耗时 5ms,A 系统从接受一个请求到返回响应给用户,总时长是 3 + 5 = 8ms。

削峰:减少高峰时期对服务器压力。

4. 消息队列有什么缺点

系统可用性降低

本来系统运行好好的,现在你非要加入个消息队列进去,那消息队列挂了,你的系统不是呵呵了。因此,系统可用性会降低;

系统复杂度提高

加入了消息队列,要多考虑很多方面的问题,比如:一致性问题、如何保证消息不被重复消费、如何保证消息可靠性传输等。因此,需要考虑的东西更多,复杂性增大。

一致性问题

A 系统处理完了直接返回成功了,人都以为你这个请求就成功了;但是问题是,要是 BCD 三个系统那里,BD 两个系统写库成功了,结果 C 系统写库失败了,咋整?你这数据就不一致了。

所以消息队列实际是一种非常复杂的架构,你引入它有很多好处,但是也得针对它带来的坏处做各种额外的技术方案和架构来规避掉,做好之后,你会发现,妈呀,系统复杂度提升了一个数量级,也许是复杂了 10 倍。但是关键时刻,用,还是得用的。

5. Kafka、ActiveMQ、RabbitMQ、RocketMQ 有什么优缺点?

特性ActiveMQRabbitMQRocketMQKafka
单机吞吐量万级,比RocketMOKafka 低一个数量级同ActiveMQ10 万级,支撑高吞吐10 万级,高吞吐,一般配合大数据类的系统来进行实时数据计算、日志采集等场景
topic数量对吞吐量的影响————topic 可以达到几百/几千的级别,吞叶量会有较小幅度的下降,这是 RocketMO 的一大优势,在同等机器下,可以支撑大量的 topictopic 从几十到几百个时候,吞吐量会大幅度下降,在同等机器下,Kafka 尽量保证 topic 数量不要过多,如果要支撑大规模的 topic,需要增加更多的机器资源
时效性ms级微秒级,这是RabbitMQ的一大特点,延迟最低ms级延迟在 ms 级以内
可用性高,基于主从架构实现高可用同ActiveMQ非常高,分布式架构非常高,分布式,一个数据多个副本,少数机器宕机,不会丢失数据,不会导致不可用
消息可靠性有较低的概率丢失数据基本不丢经过参数优化配置,可以做到 0丢失同 RocketMQ
功能支持MQ 领域的功能极其完备基于erlang开发,并发能力很强,性能极好延时很低MQ 功能较为完善,还是分布式的,扩展性好功能较为简单,主要支持简单的 MO 功能,在大数据领域的实时计算以及日志采集被大规模使用

综上,各种对比之后,有如下建议:

  • 一般的业务系统要引入 MQ,最早大家都用 ActiveMQ,但是现在确实大家用的不多了,没经过大规模吞吐量场景的验证,社区也不是很活跃,所以大家还是算了吧,我个人不推荐用这个了;后来大家开始用RabbitMQ,但是确实 erlang 语言阻止了大量的 Java 工程师去深入研究和掌控它,对公司而言,几乎处于不可控的状态,但是确实人家是开源的,比较稳定的支持,活跃度也高;
  • 不过现在确实越来越多的公司会去用 RocketMQ,确实很不错,毕竟是阿里出品,但社区可能有突然黄掉的风险(目前 RocketMQ 已捐给 Apache,但 GitHub 上的活跃度其实不算高)对自己公司技术实力有绝对自信的,推荐用 RocketMQ,否则回去老老实实用 RabbitMQ 吧,人家有活跃的开源社区,绝对不会黄。
  • 所以中小型公司,技术实力较为一般,技术挑战不是特别高,用 RabbitMQ 是不错的选择;大型公司,基础架构研发实力较强,用 RocketMQ 是很好的选择。
  • 如果是大数据领域的实时计算、日志采集等场景,用 Kafka 是业内标准的,绝对没问题,社区活跃度很高,绝对不会黄,何况几乎是全世界这个领域的事实性规范。

6. MQ 有哪些常见问题?如何解决这些问题?

消息的顺序问题

消息有序指的是可以按照消息的发送顺序来消费。假如生产者产生了2 条消息:M1、M2,假定 M1 发送到 S1,M2 发送到 S2,如果要保证 M1 先于 M2 被消费,怎么做?

在这里插入图片描述

解决方案

保证生产者 - MQServer - 消费者是一对一对一的关系

在这里插入图片描述

缺陷

  • 并行度就会成为消息系统的瓶颈(吞吐量不够)
  • 更多的异常处理,比如:只要消费端出现问题,就会导致整个处理流程阻塞,我们不得不花费更多的精力来解决阻塞的问题。
  • 通过合理的设计或者将问题分解来规避。
  • 不关注乱序的应用实际大量存在
  • 队列无序并不意味着消息无序 所以从业务层面来保证消息的顺序而不仅仅是依赖于消息系统,是一种更合理的方式。

消息的重复问题

  • 造成消息重复的根本原因是:网络不可达。
  • 所以解决这个问题的办法就是绕过这个问题。那么问题就变成了:如果消费端收到两条一样的消息,应该怎样处理?
  • 消费端处理消息的业务逻辑保持幂等性。只要保持幂等性,不管来多少条重复消息,最后处理的结果都一样。保证每条消息都有唯一编号且保证消息处理成功与去重表的日志同时出现。利用一张日志表来记录已经处理成功的消息的 ID,如果新到的消息 ID 已经在日志表中,那么就不再处理这条消息。

7. 什么是RabbitMQ

RabbitMQ是一款开源的,Erlang编写的,消息中间件; 最大的特点就是消费并不需要确保提供方存在,实现了服务之间的高度解耦,可以用它来:解耦、异步、削峰。

8. rabbitmq 的使用场景

(1)服务间异步通信

(2)顺序消费

(3)定时任务

(4)请求削峰

9. RabbitMQ基本概念

  • Broker:简单来说就是消息队列服务器实体
  • Exchange:消息交换机,它指定消息按什么规则,路由到哪个队列
  • Queue:消息队列载体,每个消息都会被投入到一个或多个队列
  • Binding:绑定,它的作用就是把exchange和queue按照路由规则绑定起来
  • Routing Key:路由关键字,exchange根据这个关键字进行消息投递
  • VHost:vhost 可以理解为虚拟 broker ,即 mini-RabbitMQ server。其内部均含有独立的queue、exchange 和 binding 等,但最最重要的是,其拥有独立的权限系统,可以做到 vhost 范围的用户控制。当然,从 RabbitMQ 的全局角度,vhost 可以作为不同权限隔离的手段(一个典型的例子就是不同的应用可以跑在不同的 vhost 中)。
  • Producer:消息生产者,就是投递消息的程序
  • Consumer:消息消费者,就是接受消息的程序
  • Channel:消息通道,在客户端的每个连接里,可建立多个channel,每个channel代表一个会话任务

由Exchange、Queue、RoutingKey三个才能决定一个从Exchange到Queue的唯一的线路。

10. RabbitMQ的工作模式

simple模式(即最简单的收发模式)

在这里插入图片描述

  1. 消息产生消息,将消息放入队列

  2. 消息的消费者(consumer) 监听 消息队列,如果队列中有消息,就消费掉,消息被拿走后,

自动从队列中删除(隐患:消息可能没有被消费者正确处理,已经从队列中消失了,造成消息的丢失,这里可以设置成手动的ack,但如果设置成手动ack,处理完后要及时发送ack消息给队列,否则会造成内存溢出)。

work工作模式(资源的竞争)

在这里插入图片描述

消息产生者将消息放入队列消费者可以有多个,消费者1,消费者2同时监听同一个队列,消息被消费。C1 C2共同争抢当前的消息队列内容,谁先拿到谁负责消费消息(隐患:高并发情况下,默认会产生某一个消息被多个消费者共同使用,可以设置一个开关(syncronize) 保证一条消息只能被一个消费者使用)。

**publish/subscribe发布订阅(共享资源) **

在这里插入图片描述

  1. 每个消费者监听自己的队列;

  2. 生产者将消息发给broker,由交换机将消息转发到绑定此交换机的每个队列,每个绑定交换机的队列都将接收到消息。

routing路由模式

在这里插入图片描述

  1. 消息生产者将消息发送给交换机按照路由判断,路由是字符串(info) 当前产生的消息携带路由字符(对象的方法),交换机根据路由的key,只能匹配上路由key对应的消息队列,对应的消费者才能消费消息;

  2. 根据业务功能定义路由字符串

  3. 从系统的代码逻辑中获取对应的功能字符串,将消息任务扔到对应的队列中。

  4. 业务场景:error 通知;EXCEPTION;错误通知的功能;传统意义的错误通知;客户通知;利用key路由,可以将程序中的错误封装成消息传入到消息队列中,开发者可以自定义消费者,实时接收错误;

topic 主题模式(路由模式的一种)

在这里插入图片描述

  1. 星号井号代表通配符

  2. 星号代表多个单词,井号代表一个单词

  3. 路由功能添加模糊匹配

  4. 消息产生者产生消息,把消息交给交换机

  5. 交换机根据key的规则模糊匹配到对应的队列,由队列的监听消费者接收消息消费

(看来就是routing查询的一种模糊匹配,就类似sql的模糊查询方式)

11. 如何保证RabbitMQ消息的顺序性?

拆分多个 queue(消息队列),每个 queue(消息队列) 一个 consumer(消费者),就是多一些 queue(消息队列)而已,确实是麻烦点;或者就一个 queue (消息队列)但是对应一个 consumer(消费者),然后这个 consumer(消费者)内部用内存队列做排队,然后分发给底层不同的 worker 来处理。

12. 消息如何分发?

若该队列至少有一个消费者订阅,消息将以循环(round-robin)的方式发送给消费者。每条消息只会分发给一个订阅的消费者(前提是消费者能够正常处理消息并进行确认)。通过路由可实现多消费的功能。

13. 消息怎么路由?

消息提供方->路由->一至多个队列消息发布到交换器时,消息将拥有一个路由键(routing key),在消息创建时设定。通过队列路由键,可以把队列绑定到交换器上。消息到达交换器后, RabbitMQ 会将消息的路由键与队列的路由键进行匹配(针对不同的交换器有不同的路由规则);

常用的交换器主要分为一下三种:

  1. fanout:如果交换器收到消息,将会广播到所有绑定的队列上

  2. direct:如果路由键完全匹配,消息就被投递到相应的队列

  3. topic:可以使来自不同源头的消息能够到达同一个队列。 使用 topic 交换器时,可以使用通配符

14. 消息基于什么传输?

由于 TCP 连接的创建和销毁开销较大,且并发数受系统资源限制,会造成性能瓶颈。RabbitMQ使用信道的方式来传输数据。信道是建立在真实的 TCP 连接内的虚拟连接,且每条 TCP 连接上的信道数量没有限制。

15. 如何保证消息不被重复消费?或者说,如何保证消息消费时的幂等性?

  • 先说为什么会重复消费:正常情况下,消费者在消费消息的时候,消费完毕后,会发送一个确认消息给消息队列,消息队列就知道该消息被消费了,就会将该消息从消息队列中删除;
  • 但是因为网络传输等等故障,确认信息没有传送到消息队列,导致消息队列不知道自己已经消费过该消息了,再次将消息分发给其他的消费者。
  • 针对以上问题,一个解决思路是:保证消息的唯一性,就算是多次传输,不要让消息的多次消费带来影响;保证消息等幂性;

比如:在写入消息队列的数据做唯一标示,消费消息时,根据唯一标识判断是否消费过;假设你有个系统,消费一条消息就往数据库里插入一条数据,要是你一个消息重复两次,你不就插入了两条,这数据不就错了?但是你要是消费到第二次的时候,自己判断一下是否已经消费过了,若是就直接扔了,这样不就保留了一条数据,从而保证了数据的正确性

16. 如何确保消息正确地发送至 RabbitMQ? 如何确保消息接收方消费了消息?

发送方确认模式

  • 将信道设置成 confirm 模式(发送方确认模式),则所有在信道上发布的消息都会被指派一个唯一的 ID。
  • 一旦消息被投递到目的队列后,或者消息被写入磁盘后(可持久化的消息),信道会发送一个确认给生产者(包含消息唯一 ID)。
  • 如果 RabbitMQ 发生内部错误从而导致消息丢失,会发送一条 nack(notacknowledged,未确认)消息。
  • 发送方确认模式是异步的,生产者应用程序在等待确认的同时,可以继续发送消息。当确认消息到达生产者应用程序,生产者应用程序的回调方法就会被触发来处理确认消息。

接收方确认机制

  • 消费者接收每一条消息后都必须进行确认(消息接收和消息确认是两个不同操作)。只有消费者确认了消息,RabbitMQ 才能安全地把消息从队列中删除。
  • 这里并没有用到超时机制,RabbitMQ 仅通过 Consumer 的连接中断来确认是否需要重新发送消息。也就是说,只要连接不中断,RabbitMQ 给了 Consumer 足够长的时间来处理消息。保证数据的最终一致性;

下面罗列几种特殊情况

  • 如果消费者接收到消息,在确认之前断开了连接或取消订阅,RabbitMQ 会认为消息没有被分发,然后重新分发给下一个订阅的消费者。(可能存在消息重复消费的隐患,需要去重)。
  • 如果消费者接收到消息却没有确认消息,连接也未断开,则 RabbitMQ 认为该消费者繁忙,将不会给该消费者分发更多的消息。

17. 如何保证RabbitMQ消息的可靠传输?

消息不可靠的情况可能是消息丢失,劫持等原因;

丢失又分为:生产者丢失消息、消息列表丢失消息、消费者丢失消息;

  1. 生产者丢失消息

    从生产者弄丢数据这个角度来看,RabbitMQ提供transaction和confirm模式来确保生产者不丢消息;transaction机制就是说:发送消息前,开启事务(channel.txSelect()),然后发送消息,如果发送过程中出现什么异常,事务就会回滚(channel.txRollback()),如果发送成功则提交事务(channel.txCommit())。然而,这种方式有个缺点:吞吐量下降;

    confirm模式用的居多:一旦channel进入confirm模式,所有在该信道上发布的消息都将会被指派一个唯一的ID(从1开始),一旦消息被投递到所有匹配的队列之后;rabbitMQ就会发送一个ACK给生产者(包含消息的唯一ID),这就使得生产者知道消息已经正确到达目的队列了;

    如果rabbitMQ没能处理该消息,则会发送一个Nack消息给你,你可以进行重试操作。

  2. 消息队列丢数据:消息持久化。

    处理消息队列丢数据的情况,一般是开启持久化磁盘的配置。

    这个持久化配置可以和confirm机制配合使用,你可以在消息持久化磁盘后,再给生产者发送一个Ack信号。

    这样,如果消息持久化磁盘之前,rabbitMQ阵亡了,那么生产者收不到Ack信号,生产者会自动重发。

    那么如何持久化呢?这里顺便说一下吧,其实也很容易,就下面两步

    • 将queue的持久化标识durable设置为true,则代表是一个持久的队列

    • 发送消息的时候将deliveryMode=2,这样设置以后,即使rabbitMQ挂了,重启后也能恢复数据

  3. 消费者丢失消息:

    消费者丢数据一般是因为采用了自动确认消息模式,改为手动确认消息即可!

    消费者在收到消息之后,处理消息之前,会自动回复RabbitMQ已收到消息;如果这时处理消息失败,就会丢失该消息;

    解决方案:处理消息成功后,手动回复确认消息。

18. 为什么不应该对所有的 message 都使用持久化机制?

  • 首先,必然导致性能的下降,因为写磁盘比写 RAM 慢的多,message 的吞吐量可能有 10 倍的差距。
  • 其次,message 的持久化机制用在 RabbitMQ 的内置 cluster 方案时会出现“坑爹”问题。矛盾点在于,若 message 设置了 persistent 属性,但 queue 未设置 durable 属性,那么当该 queue 的owner node 出现异常后,在未重建该 queue 前,发往该 queue 的 message 将被 blackholed ;若 message 设置了 persistent 属性,同时 queue 也设置了 durable 属性,那么当 queue 的owner node 异常且无法重启的情况下,则该 queue 无法在其他 node 上重建,只能等待其owner node 重启后,才能恢复该 queue 的使用,而在这段时间内发送给该 queue 的 message将被 blackholed 。
  • 所以,是否要对 message 进行持久化,需要综合考虑性能需要,以及可能遇到的问题。若想达到100,000 条/秒以上的消息吞吐量(单 RabbitMQ 服务器),则要么使用其他的方式来确保message 的可靠 delivery ,要么使用非常快速的存储系统以支持全持久化(例如使用 SSD)。另外一种处理原则是:仅对关键消息作持久化处理(根据业务重要程度),且应该保证关键消息的量不会导致性能瓶颈。

19. RabbitMQ 的集群如何保证高可用的?

  1. 单机模式,就是 Demo 级别的,一般就是你本地启动了玩玩儿的,没人生产用单机模式。

  2. 普通集群模式:

    意思就是在多台机器上启动多个 RabbitMQ 实例,每个机器启动一个。

    你创建的 queue,只会放在一个 RabbitMQ 实例上,但是每个实例都同步 queue 的元数据(元数据可以认为是 queue 的一些配置信息,通过元数据,可以找到 queue 所在实例)。你消费的时候,实际上如果连接到了另外一个实例,那么那个实例会从 queue 所在实例上拉取数据过来。这方案主要是提高吞吐量的,就是说让集群中多个节点来服务某个 queue 的读写操作。

  3. 镜像集群模式:

    这种模式,才是所谓的 RabbitMQ 的高可用模式。跟普通集群模式不一样的是,在镜像集群模式下,你创建的 queue,无论元数据还是 queue 里的消息都会存在于多个实例上,就是说,每个 RabbitMQ 节点都有这个 queue 的一个完整镜像,包含 queue 的全部数据的意思。然后每次你写消息到 queue 的时候,都会自动把消息同步到多个实例的 queue 上。RabbitMQ 有很好的管理控制台,就是在后台新增一个策略,这个策略是镜像集群模式的策略,指定的时候是可以要求数据同步到所有节点的,也可以要求同步到指定数量的节点,再次创建 queue 的时候,应用这个策略,就会自动将数据同步到其他的节点上去了。

    这样的好处在于,你任何一个机器宕机了,没事儿,其它机器(节点)还包含了这个 queue的完整数据,别的 consumer 都可以到其它节点上去消费数据。坏处在于,第一,这个性能开销也太大了吧,消息需要同步到所有机器上,导致网络带宽压力和消耗很重!RabbitMQ一个 queue 的数据都是放在一个节点里的,镜像集群下,也是每个节点都放这个 queue 的完整数据。

20. 如何处理消息的顺序问题?

RabbitMQ通过单一的生产者和单一的消费者可以保证消息的顺序。如果需要多个消费者处理消息,则可以通过设置公平分发策略或使用“autorecknowledge”模式来保证消息的处理顺序。

21. 如何处理高并发场景下的性能问题?

RabbitMQ通过提供集群功能来处理高并发场景下的性能问题。通过将多个节点组成一个集群,可以实现负载均衡和分发,提高系统的整体处理能力。同时,还可以通过调整各种参数来优化性能,如调整消息的持久化设置、调整交换机和队列的匹配规则等。

22. 如何实现消息的优先级处理?

RabbitMQ支持消息的优先级处理。可以通过设置消息的优先级字段来实现,优先级高的消息会优先被消费者消费。此外,还可以通过使用优先级队列来实现更细粒度的优先级控制。

23. 如何在RabbitMQ中实现延迟队列?

RabbitMQ通过插件支持延迟队列的实现。延迟队列是指将消息放入队列中等待一段时间后再进行处理。要实现延迟队列,可以使用RabbitMQ的插件“rabbitmq_delayed_message_exchange”,它提供了一个延迟交换器(Delayed Message Exchange),可以将消息路由到指定的队列中等待指定的延迟时间。

24. 如何在RabbitMQ中实现优先级队列?

RabbitMQ通过插件支持优先级队列的实现。优先级队列是指根据消息的优先级进行排序和处理的队列。要实现优先级队列,可以使用RabbitMQ的插件“rabbitmq_priority_queue”,它提供了一个优先级队列交换机(Priority Queue Exchange),可以将具有不同优先级的消息路由到不同的队列中。

25. 如何在RabbitMQ中实现死信队列?

RabbitMQ通过插件支持死信队列的实现。死信队列是指当消息无法被成功消费或处理时,将其放入指定的死信队列中。要实现死信队列,可以使用RabbitMQ的插件“rabbitmq_dead_letter_exchange”,它提供了一个死信交换机(Dead Letter Exchange),可以将无法被处理的消息路由到指定的死信队列中。
itMQ通过插件支持优先级队列的实现。优先级队列是指根据消息的优先级进行排序和处理的队列。要实现优先级队列,可以使用RabbitMQ的插件“rabbitmq_priority_queue”,它提供了一个优先级队列交换机(Priority Queue Exchange),可以将具有不同优先级的消息路由到不同的队列中。

25. 如何在RabbitMQ中实现死信队列?

RabbitMQ通过插件支持死信队列的实现。死信队列是指当消息无法被成功消费或处理时,将其放入指定的死信队列中。要实现死信队列,可以使用RabbitMQ的插件“rabbitmq_dead_letter_exchange”,它提供了一个死信交换机(Dead Letter Exchange),可以将无法被处理的消息路由到指定的死信队列中。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/316437.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

iCloud 备份 如何删除?

文章目录 Intro操作效果 浏览器端触发手机操作 Intro 前几天重置手机系统,不小心向 iCloud 推送了手机备份。 可是我用的是不需要这份备份,想要删除,可是常规入口找不到删除icloud中备份的按钮。 需要如下设备: 一台iphone &am…

Java中的throw和throws:异常处理详解

简单来说就是:你用throws不一定会抛出异常,它只是代表这个方法可能抛出这个异常,像打个预防针一样; 你要用throw那一定会抛出异常,因为throw是一个行为,代表抛出异常的动作。 一. throw关键字&#xff1…

Unity中Shader的Reversed-Z(DirectX平台)

文章目录 前言一、在对裁剪坐标归一化设置NDC时,DirectX平台Z的特殊二、在图形计算器中,看一下Z值反转前后变化1、在图形计算器创建两个变量 n 和 f 分别 控制近裁剪面 和 远裁剪面2、带入公式得到齐次裁剪空间下Z值3、进行透视除法4、用 1 - Z 得出Z值反…

CNAS中兴新支点——第三方检测机构执行的标准是什么?

第三方软件测评机构执行的标准包括但不限于以下几个方面: 1、国家和行业标准:第三方软件测评机构必须遵循国家和行业标准,如《软件测试文档标准》(GB/T 25000.51-2016)、《软件能力成熟度模型》(CMM)等。这些标准规定了软件测试的内容、方法…

polar CTF web 被黑掉的站

一、题目 二、解答 1、dirsearch 扫目录 看到shell.php和index.php.bak 一看就是爆破,字典都给了,最后得到为 nikel

通用图片转Excel与票证转为结构化数据的Excel识别有什么区别?

引言: 随着数字化时代的到来,大量的纸质文档需要被转换为电子格式以便于管理和分析。其中,表格数据的转换尤为重要。通用图片转Excel表格识别和结构化OCR识别是两种常见的技术,它们虽然都是用于将图片中的内容转换为可编辑的Exce…

linux系统下sql脚本的执行与导出

terminal中执行 执行 mysql -u [username] -p -D [databasename] < [XXX.sql] 导出 mysql -u [username] -p [datbasename] > [XXX.sql] 导出的数据库名自定义。 mysql -u [username] -p [databasename] [tablename] > [xxx.sql] 导出表名自定义 mysql shell 执行 …

Java学习路线第六篇:互联网生态(1)

这篇则分享Java学习路线第六part&#xff1a;互联网生态 恭喜你已经成功追到第六章节啦&#xff0c;要被自己的努力感动到了吧&#xff0c;而这节将承担起学完互联网生态的使命&#xff0c;本使命为单向契约&#xff0c;你可选择YES或者选择YES。 Linux Linux从入门到精通视…

Android studio ViewPager2应用设计

一、ViewPager2应用场景&#xff1a; ViewPager2是一个功能强大的滑动容器&#xff0c;提供灵活的页面切换和布局定制功能&#xff0c;使得应用程序界面更加丰富和交互性强&#xff0c;主要应用于以下场景&#xff1a; 1&#xff09;、实现引导页或欢迎页&#xff1a;ViewPag…

笔记中所得(已删减)

1.交流电的一个周期内电压/电流的平均值都为0 2.电动势:电池将单位正电荷由负极搬到正极所做的功 5.额定能量:电池的额定容量乘以标称电压,以Wh为单位 6.500mAh意义是可以以500mA的电流放电1小时 7.电池容量的单位是mAh 13.实际电流源不能串联 14. 15. 16. 17. 18. 19.电…

[每周一更]-(第53期):Python3和Django环境安装并搭建Django

Python和Django 的安装 Python和Django 兼容情况 django 1.11.x python 2.7 3.4 3.5 3.6 LTS python 目前在用版本 Python 3.6.5 2018-03-28 更新Python 2.7.15 2018-05-01 更新Python 2.7.5 2013-05-12 更新 python和python3安装pip 同时安装上 python2.7.18、python3.11…

【Proteus仿真】【Arduino单片机】汽车尾气检测报警系统

文章目录 一、功能简介二、软件设计三、实验现象联系作者 一、功能简介 本项目使用Proteus8仿真Arduino单片机控制器&#xff0c;使用按键、LCD1602液晶、蜂鸣器模块、CO、NOx、HC和PM2.5气体传感器等。 主要功能&#xff1a; 系统运行后&#xff0c;LCD1602显示CO、NOx、HC和…