Paddle3D 2 雷达点云CenterPoint模型训练

2 Paddle3D 雷达点云CenterPoint模型训练–包含KITTI格式数据地址

2.0 数据集 百度DAIR-V2X开源路侧数据转kitti格式。

2.0.1 DAIR-V2X-I\velodyne中pcd格式的数据转为bin格式

参考源码:雷达点云数据.pcd格式转.bin格式

def pcd2bin():import numpy as npimport open3d as o3dfrom tqdm import tqdmimport ospcdPath = r'E:\DAIR-V2X-I\velodyne'binPath = r'E:\DAIR-V2X-I\kitti\training\velodyne'files = os.listdir(pcdPath)files = [f for f in files if f[-4:]=='.pcd']for ic in tqdm(range(len(files)), desc='进度 '):f = files[ic]pcdname = os.path.join(pcdPath, f)binname = os.path.join(binPath, f[:-4] + '.bin')# 读取PCD文件# pcd = o3d.io.read_point_cloud("./data/002140.ply")pcd = o3d.io.read_point_cloud(pcdname)# print('==============pcd\n', pcd)# print('==============pcd.points\n', pcd.points)points = np.asarray(pcd.points)# print('==============points\n', points)# print(type(points))# print(points.shape)# 添加全0列point0 = np.zeros((points.shape[0], 1))points = np.column_stack((points,point0))# print(points.shape)# 查看点云图像# o3d.visualization.draw_geometries([pcd])# 将PCD格式保存为BIN格式,使用.tofile实现;# 理论上o3d.io.write_point_cloud也可以实现,但是运行的时候,没有报错,但也并没有保存文件points.tofile(binname)o3d.io.write_point_cloud(os.path.join(binPath, f[:-4]+'.bin'), pcd)  # if ic == 1:#     break

可视化查看bin文件

def visBinData():"""可视化的形式查看点云数据的Bin文件:return:"""import numpy as npfrom tqdm import tqdmimport mayavi.mlabimport osbinPath = r'D:\lidar3D\data\Lidar0\bin'# binPath = r'./data'files = os.listdir(binPath)files = [f for f in files if f[-4:] == '.bin']for ic in tqdm(range(len(files)), desc='进度 '):f = files[ic]binname = os.path.join(binPath, f)pointcloud = np.fromfile(binname, dtype=np.float32, count=-1).reshape([-1,4])x = pointcloud[:, 0]y = pointcloud[:, 1]z = pointcloud[:, 2]r = pointcloud[:, 3]d = np.sqrt(x ** 2 + y ** 2)  # Map Distance from sensordegr = np.degrees(np.arctan(z / d))vals = 'height'if vals == "height":col = zelse:col = dfig = mayavi.mlab.figure(bgcolor=(0, 0, 0), size=(640, 500))mayavi.mlab.points3d(x, y, z,col,  # Values used for Colormode="point",colormap='spectral',  # 'bone', 'copper', 'gnuplot'# color=(0, 1, 0),   # Used a fixed (r,g,b) insteadfigure=fig,)mayavi.mlab.show()break
def visBinData():import open3d as o3dimport numpy as npimport os# 替换为你的 bin 文件路径bin_file_path = r'E:\DAIR-V2X-I\kitti_s\training\velodyne'files = os.listdir(bin_file_path)for f in files[:]:# 读取 bin 文件bin_file = os.path.join(bin_file_path, f)print(bin_file)points_np = np.fromfile(bin_file, dtype=np.float32)print(points_np.shape)points_np = points_np.reshape(-1, 4)print(points_np.shape)# 创建 Open3D 点云对象pcd = o3d.geometry.PointCloud()pcd.points = o3d.utility.Vector3dVector(points_np[:, :3])# 可视化点云o3d.visualization.draw_geometries([pcd])

打印查看bin文件中的数据

def readbinfiles():import numpy as npprint('\n' + '*' * 10 + 'myData' + '*' * 10)path = r'D:\lidar3D\data\mydatas1\kitti_my\training\velodyne\000003.bin'# b1 = np.fromfile(path, dtype=np.float)b2 = np.fromfile(path, dtype=np.float32, count=-1).reshape([-1, 4])print(type(b2))print(b2.shape)print(b2)
2.0.2 先对应training中的所有数据准备好
————————training
______________calib
______________image_2
______________Label_2
______________velodyne
【1】velodyne

这里是所有的.bin格式的点云文件

【2】iamge_2

这里是velodyne中的点云文件对应的图片文件。从原文件里面相同名称的图片复制过来就可以了,这里原图片文件是.jpg的格式,kitti里面查找.png的格式好像是写死的,为避免麻烦,可以先把图片直接重命名为.png的格式。()

def jpg2png():import ospath = r'E:\DAIR-V2X-I\example71\training\image_2'files = os.listdir(path)for f in files:fsrc = os.path.join(path, f)fdes = os.path.join(path, f[:-4]+'.png')os.rename(fsrc, fdes)
【3】calib

两种方式,一种方式是忽略DAIR-V2X数据中的标定,直接复制kitti中calib/000000.txt

    if calibFlag:'''copy kitti-mini/training/calib/00000.txt cotent to my calib'''calibPath = r'E:\DAIR-V2X-I\training\calib'binPath = r'E:\DAIR-V2X-I\training\velodyne'kitti_miniCalibPath = r'D:\lidar3D\data\kitti_mini\training\calib/000000.txt'with open(kitti_miniCalibPath, "r") as calib_file:content = calib_file.read()for f in os.listdir(binPath):with open(os.path.join(calibPath, f[:-4]+".txt"),  "w") as wf:wf.write(content)

另外一种方式是提取single-infrastructure-side\calib中的标定信息写进calib/xxxxxx.txt文件。因为DAIR-V2X只有一台相机,写到p0: ,R0_rect 和 Tr_velo_to_cam 也从中读取。由于Tr_velo_to_cam 是固定的,所以写死在了代码里面

    if calibFlag1:V2XVelodynePath = r'E:\DAIR-V2X-I\training\velodyne'files = os.listdir(V2XVelodynePath)files = [f[:-4]+'.txt' for f in files]for f in files:content=[]cameintriPath = r'E:\DAIR-V2X-I\single-infrastructure-side\calib\camera_intrinsic'with open(os.path.join(cameintriPath,f[:-4]+'.json'), "r") as rf1:data = json.load(rf1)p0 = 'P0:'for d in data["P"]:p0 += ' {}'.format(d)R0_rect = 'R0_rect:'for r in data["R"]:R0_rect += ' {}'.format(r)content.append(p0+'\n')content.append('P1: 1 0 0 0 0 1 0 0 0 0 1 0\n')content.append('P2: 1 0 0 0 0 1 0 0 0 0 1 0\n')content.append('P3: 1 0 0 0 0 1 0 0 0 0 1 0\n')content.append('R0_rect: 1 0 0 0 1 0 0 0 1\n')# vir2camePath = os.path.join(V2XCalibPath, cliblist[1])# with open(os.path.join(vir2camePath,f[:-4]+'.json'), "r") as rf1:#     data = json.load(rf1)#     R = data["rotation"]#     t = data["translation"]Tr_velo_to_cam = 'Tr_velo_to_cam: -0.032055018882740139 -0.9974518923884874 0.020551248965447915 -2.190444561668236 -0.2240930139414797 0.002986041494130043 -0.8756800120708629 5.6360862566491909 0.9737455440255373 -0.041678350017788 -0.2023375046787095 1.4163664770754852\n'content.append(Tr_velo_to_cam)content.append('Tr_imu_to_velo: 1 0 0 0 0 1 0 0 0 0 1 0')fcalibname = os.path.join(mykittiCalibPath, f)# content[-1] = content[-1].replace('\n', '')with open(fcalibname, 'w', encoding='utf-8') as wf:wf.writelines(content)
【4】Label_2

方法{{{见 《 2.1.3中——【4】问题记录3 —— 重新生成label_2文件过程如下》章节}}}

点云的标签文件single-infrastructure-side\label\virtuallidar*.json转为txt文件存储,这里3Class,故只取类型([“Car”, “Cyclist”, “Pedestrian”])([‘Cyclist’, ‘Car’, ‘Truck’])。

这里将每个标签(目标)记作temp, temp [0:16] 共计16列,含义分别为:

类别[0]+是否截断[1]+是否遮挡[2]+观察角度[3]+图像左上右下[4:8]+高宽长[8:11]+相机坐标系xyz[11:14]+方向角[14]+置信度[15]

注意:测试数据集才有最后一列的置信度。

json转txt代码如下,因为只训练点云数据,所以与图片相关的值这里用0代替。

如下代码是直接取json文件中的数据,尺寸取雷达坐标系下的,位置取相机坐标系下的。

    if label_2Flag:# 1 创建文件夹 label_2label_2Path = r'E:\DAIR-V2X-I\kitti_s\training\label_22_kitti3clsNewXYZ'judgefolderExit_mkdir(label_2Path)V2XVelodynePath = r'E:\DAIR-V2X-I\kitti_s\training\velodyne'files = os.listdir(V2XVelodynePath)files = [f[:-4] + '.txt' for f in files]V2XLabelPathcamera = r'E:\DAIR-V2X-I\single-infrastructure-side\label\camera'V2XLabelPathlidar = r'E:\DAIR-V2X-I\single-infrastructure-side\label\virtuallidar'# 2 转化生成对应的.txt标签文件labelsList = {}labelsListnew = {}for f in files[:]:# print(f)with open(os.path.join(V2XLabelPathcamera, f[:-4] + '.json'), "r") as rf1:dataca = json.load(rf1)with open(os.path.join(V2XLabelPathlidar, f[:-4] + '.json'), "r") as rf1:datali = json.load(rf1)label_list = []if len(dataca) != len(datali):print('Error:  len(dataca) != len(datali)')continuefor oi in range(len(dataca)):obj_ca = dataca[oi]obj_li = datali[oi]label_name = obj_ca["type"]label_nameli = obj_li["type"]if label_name != label_nameli:print('Error: label_name != label_nameli')continue# static labelsif label_name in labelsList.keys():labelsList[label_name] += 1else:labelsList[label_name] = 1# updata label type# Car 、 Cyclist、if label_name == 'Trafficcone' or label_name == 'ScooterRider' or label_name == 'Barrowlist':continueelif label_name == 'Motorcyclist':label_name = 'Cyclist'elif label_name == 'Van':label_name = 'Car'elif label_name == 'Bus':label_name = 'Car'elif label_name == 'Truck':label_name = 'Car'if label_name in labelsListnew.keys():labelsListnew[label_name] += 1else:labelsListnew[label_name] = 1scale = obj_li["3d_dimensions"]     # 尺寸取雷达坐标系下的pos = obj_ca["3d_location"]         # 位置取相机坐标系下的rot = obj_li["rotation"]alpha = obj_ca["alpha"]  # 观察角度[3]cabox = obj_ca["2d_box"] # 图像左上右下[4:8]occluded_state = obj_ca["occluded_state"] # 是否遮挡[2]truncated_state = obj_ca["truncated_state"] # 是否截断[1]tempFlag = True  # label_list.append(temp)if tempFlag == True:# 2.1  temp 追加目标类型# temp [0:16] 共计16列# 类别[0]+是否截断[1]+是否遮挡[2]+观察角度[3]+图像左上右下[4:8]+高宽长[8:11]+#         相机坐标系xyz[11:14]+方向角[14]+置信度[15]# 注意:测试数据集才有最后一列的置信度temp = label_name + ' '+ truncated_state +' '+ occluded_state +' 0 ' + \cabox["xmin"] + ' ' + cabox["ymin"] + ' ' + cabox["xmax"] + ' ' + cabox["ymax"] + ' 'temp += (scale['h'].split('.')[0] + "." + scale['h'].split('.')[1][:2] + ' ')temp += (scale['w'].split('.')[0] + "." + scale['w'].split('.')[1][:2] + ' ')temp += (scale['l'].split('.')[0] + "." + scale['l'].split('.')[1][:2] + ' ')# 2.2.1  pos_xyz# temp += (pos['x'].split('.')[0] + "." + pos['x'].split('.')[1][:2] + ' ')# temp += (pos['y'].split('.')[0] + "." + pos['y'].split('.')[1][:2] + ' ')# temp += (pos['z'].split('.')[0] + "." + pos['z'].split('.')[1][:2] + ' ')# 2.2 固定使用转换矩阵lidar_to_cam后# 此处的矩阵目的将lidar转到cam下,再转换到rect下,同样追加到temp中(temp追加pos_xyz)# trans_Mat: calib中的 Tr_velo_to_camtrans_Mat = np.array([[-3.205501888274e-02, -9.974518923885e-01, 2.055124896545e-02, -2.190444561668e+00],[-2.240930139415e-01, 2.986041494130e-03, -8.756800120709e-01, 5.636086256649e+00],[9.737455440255e-01, -4.167835001779e-02, -2.023375046787e-01, 1.416366477075e+00],[0, 0, 0, 1]])# R0_rect: 三维单位矩阵rect_Mat = np.array([[1, 0, 0, 0],[0, 1, 0, 0],[0, 0, 1, 0],[0, 0, 0, 1]])ptx = str2float(pos["x"])pty = str2float(pos["y"])# print('pos["z"], scale["l"], type(scale["l"])\n', pos["z"], scale["l"], type(scale["l"]))ptz = str2float(pos["z"]) - (0.5 * str2float(scale["l"]))# lidar坐标系下的相机中心点pt_in_lidar = np.array([[ptx],[pty],[ptz],[1.]])pt_in_camera = np.matmul(trans_Mat, pt_in_lidar)pt_in_rect = np.matmul(rect_Mat, pt_in_camera)temp += str(pt_in_rect[0, 0]).split('.')[0] + "." + str(pt_in_rect[0, 0]).split('.')[1][0:2]temp += " "temp += str(pt_in_rect[1, 0]).split('.')[0] + "." + str(pt_in_rect[1, 0]).split('.')[1][0:2]temp += " "temp += str(pt_in_rect[2, 0]).split('.')[0] + "." + str(pt_in_rect[2, 0]).split('.')[1][0:2]temp += " "## 2.3  temp 追加 rot_xyz(先将 rot 航向角 返回到0-360°之间)rot = - str2float(rot) - (np.pi / 2)if rot > np.pi:rot = rot - 2 * np.pielif rot < -np.pi:rot = rot + 2 * np.pitemp += str(rot).split('.')[0] + "." + str(rot).split('.')[1][0:2] + "\n"label_list.append(temp)label_list[-1] = label_list[-1].replace('\n', '')# print(label_list)with open(os.path.join(label_2Path, f[:-4]+'.txt'), "w") as wf:wf.writelines(label_list)print('labels Statics = ', labelsList)print('labels Statics = ', labelsListnew)

如下代码考虑重新计算了位置信息,固定使用转换矩阵lidar_to_cam。[“Car”, “Cyclist”, “Pedestrian”]

    if label_2Flag:# 1 创建文件夹 label_2label_2Path = r'E:\DAIR-V2X-I\kitti\training\Label_2'judgefolderExit_mkdir(label_2Path)V2XVelodynePath = r'E:\DAIR-V2X-I\kitti\training\velodyne'files = os.listdir(V2XVelodynePath)files = [f[:-4] + '.txt' for f in files]V2XLabelPathcamera = r'E:\DAIR-V2X-I\single-infrastructure-side\label\camera'V2XLabelPathlidar = r'E:\DAIR-V2X-I\single-infrastructure-side\label\virtuallidar'# 2 转化生成对应的.txt标签文件labelsList = {}labelsListnew = {}for f in files[:]:# print(f)with open(os.path.join(V2XLabelPathcamera, f[:-4] + '.json'), "r") as rf1:dataca = json.load(rf1)with open(os.path.join(V2XLabelPathlidar, f[:-4] + '.json'), "r") as rf1:datali = json.load(rf1)label_list = []if len(dataca) != len(datali):print('Error:  len(dataca) != len(datali)')continuefor oi in range(len(dataca)):obj_ca = dataca[oi]obj_li = datali[oi]label_name = obj_ca["type"]label_nameli = obj_li["type"]if label_name != label_nameli:print('Error: label_name != label_nameli')continue# static labelsif label_name in labelsList.keys():labelsList[label_name] += 1else:labelsList[label_name] = 1# updata label type# Car 、 Cyclist、if label_name == 'Trafficcone' or label_name == 'ScooterRider' or label_name == 'Barrowlist':continueelif label_name == 'Motorcyclist':label_name = 'Cyclist'elif label_name == 'Van':label_name = 'Car'elif label_name == 'Bus':label_name = 'Car'elif label_name == 'Truck':label_name = 'Car'if label_name in labelsListnew.keys():labelsListnew[label_name] += 1else:labelsListnew[label_name] = 1scale = obj_li["3d_dimensions"]     # 尺寸取雷达坐标系下的pos = obj_ca["3d_location"]         # 位置取相机坐标系下的rot = obj_li["rotation"]tempFlag = False  # label_list.append(temp)if tempFlag == True:# 2.1  temp 追加目标类型# temp [0:16] 共计16列# 类别[0]+是否截断[1]+是否遮挡[2]+观察角度[3]+图像左上右下[4:8]+高宽长[8:11]+#         相机坐标系xyz[11:14]+方向角[14]+置信度[15]# 注意:测试数据集才有最后一列的置信度temp = label_name + ' 0 0 0 0 0 0 0 'temp += (scale['h'].split('.')[0] + "." + scale['h'].split('.')[1][:2] + ' ')temp += (scale['w'].split('.')[0] + "." + scale['w'].split('.')[1][:2] + ' ')temp += (scale['l'].split('.')[0] + "." + scale['l'].split('.')[1][:2] + ' ')# 2.2.1  pos_xyz# temp += (pos['x'].split('.')[0] + "." + pos['x'].split('.')[1][:2] + ' ')# temp += (pos['y'].split('.')[0] + "." + pos['y'].split('.')[1][:2] + ' ')# temp += (pos['z'].split('.')[0] + "." + pos['z'].split('.')[1][:2] + ' ')# 2.2 固定使用转换矩阵lidar_to_cam后# 此处的矩阵目的将lidar转到cam下,再转换到rect下,同样追加到temp中(temp追加pos_xyz)trans_Mat = np.array([[6.927964000000e-03, -9.999722000000e-01, -2.757829000000e-03, -2.457729000000e-02],[-1.162982000000e-03, 2.749836000000e-03, -9.999955000000e-01, -6.127237000000e-02],[9.999753000000e-01, 6.931141000000e-03, -1.143899000000e-03, -3.321029000000e-01],[0, 0, 0, 1]])rect_Mat = np.array([[9.999128000000e-01, 1.009263000000e-02, -8.511932000000e-03, 0],[-1.012729000000e-02, 9.999406000000e-01, -4.037671000000e-03, 0],[8.470675000000e-03, 4.123522000000e-03, 9.999556000000e-01, 0],[0, 0, 0, 1]])ptx = str2float(pos["x"])pty = str2float(pos["y"])# print('pos["z"], scale["l"], type(scale["l"])\n', pos["z"], scale["l"], type(scale["l"]))ptz = str2float(pos["z"]) - (0.5 * str2float(scale["l"]))# lidar坐标系下的相机中心点pt_in_lidar = np.array([[ptx],[pty],[ptz],[1.]])pt_in_camera = np.matmul(trans_Mat, pt_in_lidar)pt_in_rect = np.matmul(rect_Mat, pt_in_camera)temp += str(pt_in_rect[0, 0]).split('.')[0] + "." + str(pt_in_rect[0, 0]).split('.')[1][0:2]temp += " "temp += str(pt_in_rect[1, 0]).split('.')[0] + "." + str(pt_in_rect[1, 0]).split('.')[1][0:2]temp += " "temp += str(pt_in_rect[2, 0]).split('.')[0] + "." + str(pt_in_rect[2, 0]).split('.')[1][0:2]temp += " "## 2.3  temp 追加 rot_xyz(先将 rot 航向角 返回到0-360°之间)rot = - str2float(rot) - (np.pi / 2)if rot > np.pi:rot = rot - 2 * np.pielif rot < -np.pi:rot = rot + 2 * np.pitemp += str(rot).split('.')[0] + "." + str(rot).split('.')[1][0:2] + "\n"label_list.append(temp)# label_list[-1] = label_list[-1].replace('\n', '')# with open(os.path.join(label_2Path, f[:-4]+'.txt'), "w") as wf:#     wf.writelines(label_list)print('labels Statics = ', labelsList )print('labels Statics = ', labelsListnew )
2.0.3 kitti\testing中的数据类似training中数据

仅需移动部分数据作为test是数据即可

————————testing
______________calib
______________image_2
______________Label_2
______________velodyne
2.0.4 写kitti/ImageSets 中的txt文件

注意:如下代码中val.txt 与test.txt中的文件是一致的

def filesPath2txt():import os, randompathtrain = 'E:\DAIR-V2X-I\kitti_s/training/velodyne/'pathtest = 'E:\DAIR-V2X-I\kitti_s/testing/velodyne/'txtPath = 'E:\DAIR-V2X-I\kitti_s/ImageSets/'txt_path_train = os.path.join(txtPath, 'train.txt')txt_path_val = os.path.join(txtPath, 'val.txt')# txt_path_trainval = os.path.join(txtPath, 'trainval.txt')txt_path_test = os.path.join(txtPath, 'test.txt')# mkdirImageSets(txt_path_train, txt_path_val, txt_path_trainval, txt_path_test)files = os.listdir(pathtrain)filesList = [f[:-4] + '\n' for f in files]filestr = filesListfilestr[-1] = filestr[-1].replace('\n', '')with open(txt_path_train, 'w', encoding='utf-8') as wf:wf.writelines(filestr)files = os.listdir(pathtest)filesList = [f[:-4] + '\n' for f in files]filesval = filesList  # random.sample(filesList, 700)filesval[-1] = filesval[-1].replace('\n', '')with open(txt_path_val, 'w', encoding='utf-8') as wf:wf.writelines(filesval)# filestest = random.sample(filesList, 400)# filestest[-1] = filestest[-1].replace('\n', '')with open(txt_path_test, 'w', encoding='utf-8') as wf:wf.writelines(filesval)

2.1 paddle3D训练

cd ./Paddle3D
2.1.1 数据
【1】数据

数据存放在Paddle3D/datasets目录下,结构如下:

datasets/
datasets/KITTI/
————datasets/KITTI/ImageSets
————datasets/KITTI/testing
————datasets/KITTI/training
【2】数据预处理

使用如下代码完成数据的预处理操作

python tools/create_det_gt_database.py --dataset_name kitti --dataset_root ./datasets/KITTI --save_dir ./datasets/KITTI

上述过程打印如下,运行结束会生成datasets/KITTI/kitti_train_gt_database目录。

root/anaconda3/envs/pip_paddle_env/lib/python3.8/site-packages/setuptools/sandbox.py:13: DeprecationWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.htmlimport pkg_resources
root/anaconda3/envs/pip_paddle_env/lib/python3.8/site-packages/pkg_resources/__init__.py:2871: DeprecationWarning: Deprecated call to `pkg_resources.declare_namespace('mpl_toolkits')`.
Implementing implicit namespace packages (as specified in PEP 420) is preferred to `pkg_resources.declare_namespace`. See https://setuptools.pypa.io/en/latest/references/keywords.html#keyword-namespace-packagesdeclare_namespace(pkg)
root/anaconda3/envs/pip_paddle_env/lib/python3.8/site-packages/pkg_resources/__init__.py:2871: DeprecationWarning: Deprecated call to `pkg_resources.declare_namespace('google')`.
Implementing implicit namespace packages (as specified in PEP 420) is preferred to `pkg_resources.declare_namespace`. See https://setuptools.pypa.io/en/latest/references/keywords.html#keyword-namespace-packagesdeclare_namespace(pkg)
ortools not installed, install it by "pip install ortools==9.1.9490" if you run BEVLaneDet model
2023-12-26 17:45:46,823 -     INFO - Begin to generate a database for the KITTI dataset.
2023-12-26 17:46:06,774 -     INFO - [##################################################] 100.00%
2023-12-26 17:46:07,012 -     INFO - The database generation has been done.
2.1.2 模型配置文件

为避免修改原模型配置文件,先复制一份并命名为centerpoint_pillars_016voxel_kitti_my.yml

cp ./configs/centerpoint/centerpoint_pillars_016voxel_kitti.yml ./configs/centerpoint/centerpoint_pillars_016voxel_kitti_my.yml

核对文件中的相关配置信息

train_dataset:type: KittiPCDatasetdataset_root: datasets/KITTI... ...class_names: ["Car", "Cyclist", "Pedestrian"]
2.1.3 训练流程及问题调试
【1】使用如下代码进行训练
# python -m paddle.distributed.launch --gpus 0,1,2,3,4,5,6,7 tools/train.py --config configs/centerpoint/centerpoint_pillars_016voxel_kitti.yml --save_dir ./output_kitti --num_workers 4 --save_interval 5python tools/train.py --config configs/centerpoint/centerpoint_pillars_016voxel_kitti_my.yml --save_dir ./output_kitti --save_interval 5 > 112.log

参数介绍

-m:使用python -m paddle.distributed.launch方法启动分布式训练任务。
参考:https://www.paddlepaddle.org.cn/documentation/docs/zh/api/paddle/distributed/launch_cn.html
> 112.log : 将其中的打印保存在112.log中
【2】问题记录1
【2-1】SystemError: (Fatal) Blocking queue is killed because the data reader raises an exception.
【2-2】KeyError: ‘DataLoader worker(1) caught KeyError with message:\nTraceback (most recent call last):\n File “/home/… …”… … self.sampler_per_class[cls_name].sampling(num_samples)\n KeyError: ‘Car’\n’

【2-1、2-2】解决方法

参考1:SystemError: (Fatal) Blocking queue is killed because the data reader raises an exception : 没找到源码中的相关位置。

参考2:SystemError: (Fatal) Blocking queue is killed (baidu.com)

利用“参考2”中提供的方法, 训练的时候,将num_worker设置为0。如下:

python tools/train.py --config configs/centerpoint/centerpoint_pillars_016voxel_kitti_my.yml --save_dir ./output_kitti --num_workers 0 --save_interval 5

将num_workers 设置为0训练的时候,报如下错误

/Paddle3D/paddle3d/transforms/sampling.py", line 172, in samplingsampling_annos = self.sampler_per_class[cls_name].sampling(num_samples)
KeyError: 'Car'

采用如下代码打印/Paddle3D/paddle3d/transforms/sampling.py", line 172中的信息,结果是{}。

print('self.sampler_per_class', self.sampler_per_class)
》》》》》》self.sampler_per_class {}

发现是配置文件中class_balanced_sampling参数是设置为False的原因。修改class_balanced_sampling为True如下

train_dataset:type: KittiPCDatasetdataset_root: datasets/KITTI... ...mode: trainclass_balanced_sampling: Trueclass_names: ["Car", "Cyclist", "Pedestrian"]
【3】问题记录2
【3-1】ZeroDivisionError: float division by zero

详细报错包含如下

File "/home/mec/hulijuan/Paddle3D/paddle3d/datasets/kitti/kitti_det.py", line 89, in <listcomp>sampling_ratios = [balanced_frac / frac for frac in fracs]
ZeroDivisionError: float division by zero

上述问题打印 print(‘kitti_det.py’, cls_dist) 发现是自己数据集中没有"Pedestrian"类别,而class_names中包含该类别。解决办法是增加包含 "Pedestrian"类 的数据。

【4】问题记录3
【4-1】又报错问题同“【2】问题记录1 SystemError: … KeyError: …”,只能是大概上面的问题没有从根本上解决掉

首先看KeyError的问题。

在paddle3d/transforms/sampling.py/class SamplingDatabase(TransformABC):/def __ init __()中增加打印。如下

    def __init__(self,min_num_points_in_box_per_class: Dict[str, int],max_num_samples_per_class: Dict[str, int],database_anno_path: str,database_root: str,class_names: List[str],ignored_difficulty: List[int] = None):self.min_num_points_in_box_per_class = min_num_points_in_box_per_classself.max_num_samples_per_class = max_num_samples_per_classself.database_anno_path = database_anno_pathwith open(database_anno_path, "rb") as f:database_anno = pickle.load(f)print('sampling.py__line58~~~~~~~~~~~~~~~~~~~~58database_anno: ', database_anno)if not osp.exists(database_root):raise ValueError(f"Database root path {database_root} does not exist!!!")self.database_root = database_rootself.class_names = class_namesself.database_anno = self._filter_min_num_points_in_box(database_anno)self.ignored_difficulty = ignored_difficultyif ignored_difficulty is not None:self.database_anno = self._filter_ignored_difficulty(self.database_anno)self.sampler_per_class = dict()print('sampling.py__line70~~~~~~~~~~~~~~~70database_anno: ', self.database_anno)for cls_name, annos in self.database_anno.items():self.sampler_per_class[cls_name] = Sampler(cls_name, annos)

通过打印,可以看出sampling.py–line70的打印是空字典,而sampling.py–line58的打印部分如下:
在这里插入图片描述

上图可以看出,num_points_in_box 的值为 0。导致如下代码运行后,database_anno 变成了空字典

self.database_anno = self._filter_min_num_points_in_box(database_anno)

上述问题应该是针对点云文件生成标签文件的时候,方法错了。

重新生成label_2文件过程如下:
1  创建环境
conda create -n pcd2bin_env python=3.8
2  激活环境
conda activate pcd2bin_env
3  安装pypcd
3.1  参考:https://blog.csdn.net/weixin_44450684/article/details/92812746
如下流程:
git clone https://github.com/dimatura/pypcd
cd pypcd
git fetch origin pull/9/head:python3
git checkout python3
python3 setup.py install --user 
python3
from pypcd import pypcd
pc = pypcd.PointCloud.from_path('pointcloud.pcd')
利用开源程序重新生成label_2文件过程如下:
源码百度网盘地址:执行程序:

2.2 数据集地址KITTI格式(DAIR-V2X-I(7058帧数据)):(长期有效)

大小:22G
链接:https://pan.baidu.com/s/1gG_S6Vtx4iWAfAVAfOxWWw 
提取码:p48l 
数据没有问题 但是label_2中的XYZ需要根据前述lanel_2的方法重新生成。需下载该数据集的标签文件single-infrastructure-side-json.zip

2.3 模型

2.3.1 模型评估

2.3.2 模型测试

2.3.3 导出模型

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/317917.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于头脑风暴算法优化的Elman神经网络数据预测 - 附代码

基于头脑风暴算法优化的Elman神经网络数据预测 - 附代码 文章目录 基于头脑风暴算法优化的Elman神经网络数据预测 - 附代码1.Elman 神经网络结构2.Elman 神经用络学习过程3.电力负荷预测概述3.1 模型建立 4.基于头脑风暴优化的Elman网络5.测试结果6.参考文献7.Matlab代码 摘要&…

EDI 项目推进流程

EDI 需求确认 交易伙伴发来EDI对接邀请&#xff0c;企业应该如何应对&#xff1f; 首先需要确认EDI需求&#xff0c;通常包括传输协议和报文标准以及传输的业务单据类型。可以向交易伙伴发送以下内容&#xff1a; &#xff08;中文版&#xff09; 与贵司建立EDI连接需要使用…

中国计算机学会推荐国际学术会议及时间(计算机体系结构/高性能计算/存储系统)

中国计算机学会推荐国际学术会议及时间 (计算机体系结构/高性能计算/存储系统) 参考资料 参考链接: call4papers

网工内推 | 网络工程师,NP认证优先,上市公司,包吃,最高15薪

01 无锡先导智能装备股份有限公司 招聘岗位&#xff1a;高级网络工程师 职责描述&#xff1a; 1.依据项目规划方案提供硬件及网络方案设计&#xff1b; 2.面向客户提供网络技术支持&#xff0c;包括故障的解决、性能的优化、日常维护等&#xff1b; 3.和合作伙伴、供应商的技术…

(七)独立按键

文章目录 独立按键原理图三行代码法简单概述代码书写键码推算如何使用短按键长按键 状态机法简单概述代码书写键码推算如何使用短按键长按键 现象 独立按键原理图 三行代码法 简单概述 代码书写 u8 Trg 0x00;//短按键 u8 Cont 0x00;//长按键 void BtnThree(void) {u8 reada…

打造专业开发者指南:针对ShardingProxy分库分表解决策略的深度剖析 – 详解部署、使用、服务治理与优化技巧

一、 ShardingProxy快速使用 ShardingProxy的功能同样是分库分表&#xff0c;但是他是一个独立部署的服务端&#xff0c;提供 统一的数据库代理服务。注意&#xff0c;ShardingProxy目前只支持MySQL和PostgreSQL。并且&#xff0c;客户端连接ShardingProxy时&#xff0c;最好使…

Java反射机制和动态代理

反射和动态代理 反射前言获取class对象的方式反射获取构造方法反射获取成员变量反射获取成员方法实例 动态代理 反射 前言 什么是反射&#xff1f; 反射允许对成员变量&#xff0c;成员方法和构造方法的信息进行编程访问。 为什么用反射 / 反射的作用&#xff1f; 可以轻易地获…

图像分割-漫水填充法 floodFill (C#)

版权声明&#xff1a;本文为博主原创文章&#xff0c;转载请在显著位置标明本文出处以及作者网名&#xff0c;未经作者允许不得用于商业目的。 本文的VB版本请访问&#xff1a;图像分割-漫水填充法 floodFill-CSDN博客 FloodFill方法是一种图像处理算法&#xff0c;它的目的是…

【SpringBoot框架篇】34.使用Spring Retry完成任务的重试

文章目录 简要1.为什么需要重试&#xff1f;2.添加maven依赖3.使用Retryable注解实现重试4.基于RetryTemplate模板实现重试 简要 Spring实现了一套重试机制&#xff0c;功能简单实用。Spring Retry是从Spring Batch独立出来的一个功能&#xff0c;已经广泛应用于Spring Batch,…

哪些洗地机比较好?洗地机选购指南

随着社会生活水平的提高&#xff0c;人们对居家环境的卫生和清洁要求不断提升。家用洗地机作为一种先进的清洁工具&#xff0c;带来了许多便利和优势&#xff0c;特别是在解决一些特殊需求的家庭环境方面。 以下是一些家用洗地机的优势和适用场景&#xff1a; 1.高效清洁&…

Hive用户自定义函数之UDF开发

在进行大数据分析或者开发的时候&#xff0c;难免用到Hive进行数据查询分析&#xff0c;Hive内置很多函数&#xff0c;但是会有一部分需求需要自己开发&#xff0c;这个时候就需要自定义函数了&#xff0c;Hive的自定义函数开发非常方便&#xff0c;今天首先讲一下UDF的入门开发…

爬虫如何获取免费代理IP(二)

89ip代理爬取代码实现 一、代码实现 import requests import time import random from fake_useragent import UserAgent from lxml import etree import os import csv""" 89ip代理爬取 """class IPSipder(object):def __init__(self):self.u…