基于深度学习的交通标志图像分类识别系统

温馨提示:文末有 CSDN 平台官方提供的学长 QQ 名片 :) 

1. 项目简介

        本文详细探讨了一基于深度学习的交通标志图像识别系统。采用TensorFlow和Keras框架,利用卷积神经网络(CNN)进行模型训练和预测,并引入VGG16迁移学习模型,取得96%的高准确率。通过搭建Web系统,用户能上传交通标志图片,系统实现了自动实时的交通标志分类识别。该系统不仅展示了深度学习在交通领域的实际应用,同时为用户提供了一种高效、准确的交通标志识别服务。

2. 交通标志数据集读取

        数据集里面的图像具有不同大小,光照条件,遮挡情况下的43种不同交通标志符号,图像的成像情况与你实际在真实环境中不同时间路边开车走路时看到的交通标志的情形非常相似。训练集包括大约39,000个图像,而测试集大约有12,000个图像。图像不能保证是固定 的尺寸,标志不一定在每个图像中都是居中。每个图像包含实际交通标志周围10%左右的边界。

folders = os.listdir(train_path)train_number = []
class_num = []for folder in folders:train_files = os.listdir(train_path + '/' + folder)train_number.append(len(train_files))class_num.append(classes[int(folder)])# 不同类别交通标志数量,并进行排序
zipped_lists = zip(train_number, class_num)
sorted_pairs = sorted(zipped_lists)
tuples = zip(*sorted_pairs)
train_number, class_num = [ list(t) for t in  tuples]# 绘制不同类别交通标志数量分布柱状图
plt.figure(figsize=(21,10))  
plt.bar(class_num, train_number)
plt.xticks(class_num, rotation='vertical', fontsize=16)
plt.title('不同类别交通标志数量分布柱状图', fontsize=20)
plt.show()

         划分训练集、验证集:

X_train, X_val, y_train, y_val = train_test_split(image_data, image_labels, test_size=0.3, random_state=42, shuffle=True)X_train = X_train/255 
X_val = X_val/255print("X_train.shape", X_train.shape)
print("X_valid.shape", X_val.shape)
print("y_train.shape", y_train.shape)
print("y_valid.shape", y_val.shape)

        类别标签进行 One-hot 编码:

y_train = keras.utils.to_categorical(y_train, NUM_CATEGORIES)
y_val = keras.utils.to_categorical(y_val, NUM_CATEGORIES)print(y_train.shape)
print(y_val.shape)

3. 卷积神经网络模型构建

model = keras.models.Sequential([    keras.layers.Conv2D(filters=16, kernel_size=(3,3), activation='relu', input_shape=(IMG_HEIGHT,IMG_WIDTH,channels)),keras.layers.Conv2D(filters=32, kernel_size=(3,3), activation='relu'),# ......keras.layers.Conv2D(filters=64, kernel_size=(3,3), activation='relu'),# ......keras.layers.Flatten(),keras.layers.Dense(512, activation='relu'),keras.layers.BatchNormalization(),keras.layers.Dropout(rate=0.5),keras.layers.Dense(43, activation='softmax')
])

4. 模型训练与性能评估

        设置模型训练参数:

epochs = 20initial_learning_rate = 5e-5lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate, #设置初始学习率decay_steps=64,      #每隔多少个step衰减一次decay_rate=0.98,     #衰减系数staircase=True)# 将指数衰减学习率送入优化器
optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule)model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy'])history = model.fit(X_train, y_train, batch_size=32, epochs=epochs, validation_data=(X_val, y_val))

        加载测试集进行模型评估: 

# 计算测试集准确率
pred = model.predict(X_test)
pred_labels = np.argmax(pred, 1)print('测试集准确率: ',accuracy_score(labels, pred_labels)*100)
测试集准确率:  93.24623911322249

5. 基于迁移学习的交通标志识别

from tensorflow.keras.applications import VGG16height = 32
width = 32vgg_base_model = VGG16(weights='imagenet', include_top=False, input_shape=(height,width,3))
vgg_base_model.trainable=Truevgg_model = tf.keras.Sequential([vgg_base_model,keras.layers.BatchNormalization(),keras.layers.Flatten(),keras.layers.Dense(512, activation='relu'),keras.layers.BatchNormalization(),keras.layers.Dropout(rate=0.5),keras.layers.Dense(43, activation='softmax')])vgg_model.summary()

Epoch 1/20
858/858 [==============================] - ETA: 0s - loss: 0.9774 - accuracy: 0.7366
Epoch 1: val_accuracy improved from -inf to 0.94806, saving model to best_model.h5
858/858 [==============================] - 334s 387ms/step - loss: 0.9774 - accuracy: 0.7366 - val_loss: 0.1651 - val_accuracy: 0.9481
Epoch 2/20
858/858 [==============================] - ETA: 0s - loss: 0.0737 - accuracy: 0.9804
Epoch 2: val_accuracy improved from 0.94806 to 0.97866, saving model to best_model.h5
858/858 [==============================] - 350s 408ms/step - loss: 0.0737 - accuracy: 0.9804 - val_loss: 0.0750 - val_accuracy: 0.9787
Epoch 3/20
858/858 [==============================] - ETA: 0s - loss: 0.0274 - accuracy: 0.9926
Epoch 3: val_accuracy improved from 0.97866 to 0.98266, saving model to best_model.h5
858/858 [==============================] - 351s 409ms/step - loss: 0.0274 - accuracy: 0.9926 - val_loss: 0.0681 - val_accuracy: 0.9827
Epoch 4/20
858/858 [==============================] - ETA: 0s - loss: 0.0197 - accuracy: 0.9946
Epoch 4: val_accuracy improved from 0.98266 to 0.99779, saving model to best_model.h5
858/858 [==============================] - 339s 395ms/step - loss: 0.0197 - accuracy: 0.9946 - val_loss: 0.0085 - val_accuracy: 0.9978
Epoch 5/20
858/858 [==============================] - ETA: 0s - loss: 0.0081 - accuracy: 0.9982
Epoch 5: val_accuracy improved from 0.99779 to 0.99830, saving model to best_model.h5
858/858 [==============================] - 364s 424ms/step - loss: 0.0081 - accuracy: 0.9982 - val_loss: 0.0067 - val_accuracy: 0.9983
Epoch 6/20
858/858 [==============================] - ETA: 0s - loss: 0.0025 - accuracy: 0.9995
Epoch 6: val_accuracy improved from 0.99830 to 0.99855, saving model to best_model.h5
858/858 [==============================] - 354s 413ms/step - loss: 0.0025 - accuracy: 0.9995 - val_loss: 0.0053 - val_accuracy: 0.9986
Epoch 7/20
858/858 [==============================] - ETA: 0s - loss: 0.0030 - accuracy: 0.9992
Epoch 7: val_accuracy did not improve from 0.99855
858/858 [==============================] - 333s 389ms/step - loss: 0.0030 - accuracy: 0.9992 - val_loss: 0.0126 - val_accuracy: 0.9969
Epoch 7: early stopping 

         模型评估:

# 计算测试集准确率
pred = vgg_model.predict(X_test)
pred_labels = np.argmax(pred, 1)print('测试集准确率: ',accuracy_score(labels, pred_labels)*100)

         测试集准确率: 96.02533650039588

6. 测试集预测结果可视化

plt.figure(figsize = (25, 25))start_index = 0
for i in range(25):plt.subplot(5, 5, i + 1)plt.grid(False)plt.xticks([])plt.yticks([])prediction = pred_labels[start_index + i]actual = labels[start_index + i]col = 'g'if prediction != actual:col = 'r'plt.xlabel('实际类别:{}\n预测类别:{}'.format(classes[actual], classes[prediction]), color = col, fontsize=18)plt.imshow(X_test[start_index + i])
plt.show()

7. 交通标志分类识别系统

7.1 首页

7.2 交通标志在线识别

8. 结论

        本文详细探讨了一基于深度学习的交通标志图像识别系统。采用TensorFlow和Keras框架,利用卷积神经网络(CNN)进行模型训练和预测,并引入VGG16迁移学习模型,取得96%的高准确率。通过搭建Web系统,用户能上传交通标志图片,系统实现了自动实时的交通标志分类识别。该系统不仅展示了深度学习在交通领域的实际应用,同时为用户提供了一种高效、准确的交通标志识别服务。

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。技术交流、源码获取认准下方 CSDN 官方提供的学长 QQ 名片 :)

精彩专栏推荐订阅:

1. Python数据挖掘精品实战案例

2. 计算机视觉 CV 精品实战案例

3. 自然语言处理 NLP 精品实战案例

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/318464.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于YOLOv7算法的高精度实时海上船只目标检测识别系统(PyTorch+Pyside6+YOLOv7)

摘要:基于YOLOv7算法的高精度实时海上船只目标检测系统可用于日常生活中检测与定位海上船只,此系统可完成对输入图片、视频、文件夹以及摄像头方式的目标检测与识别,同时本系统还支持检测结果可视化与导出。本系统采用YOLOv7目标检测算法来训…

基于华为ENSP模拟器-vlan划分网络

需求 不连外网的内网。需求隔离故障和隔离广播风暴,并要保证网络的连通。 解决方案使用三层交互机,设置vlan用于隔离网络,并在三层交互机为网关保证各个vlan之间的通讯。 实现 使用三层交互机,设置vlan用于隔离网络&#xff0…

全国计算机等级考试| 二级Python | 真题及解析(11)

一、选择题 1.有关循环结构的说法不正确的是( )。 A.循环结构是算法的基本结构之一 B.有的的程序设计中没有循环结构 C.循环结构在程序设计有可能会有嵌套出现 D.在PYTHON 程序设计语言中循环结构一般使用IF语句实现。 2.在Python中要交换变量a和b中的值,应使…

Nacos学习思维导图

一、服务注册 参考文档:http://www.bryh.cn/a/118936.html https://blog.csdn.net/Saintmm/article/details/121981184 二、服务续约 参考文档:http://www.bryh.cn/a/118936.html https://blog.csdn.net/Saintmm/article/details/121981184 三、服务…

CMake入门教程【核心篇】引用子模块.cmake文件(include)

😈「CSDN主页」:传送门 😈「Bilibil首页」:传送门 😈「本文的内容」:CMake入门教程 😈「动动你的小手」:点赞👍收藏⭐️评论📝 文章目录 include子模块举个例…

多元统计分析(4):判别分析

4.1 判别分析的目标 主要目的:判别一个个体所属类别 4.2 距离判别 都选用用马氏距离 4.2.1 判别准则 化简的证明: 称为判别函数,为判别系数。 4.2.2 误判概率 【1】当两个正态总体的协方差相同 证明: 当两个正态总体重合的时…

ctfshow 元旦水友赛 月月的爱情故事(复现)

读了题目的文字,然后被刀了…… 但还是要向前看,做一个坚强又勇敢的人 好了碎碎念结束 一、原题 原题就是一段文字,一串字符和一个hint。 二、解题过程 1.base64解码 首先看到那行字符很像base64,那就先解码base64试一试嘛&a…

[C语言]比特鹏哥

主页有博主其他上万字精品笔记,都在不断完善更新! C语言 初识C语言 基本了解C语言的基础知识,对C语言有一个大概的认识。 每个知识点就是简单认识,不做详细讲解,后期课程都会细讲。 本章重点: 什么是C语言 第一个C语言程序 数据…

QT基础知识

QT基础知识 文章目录 QT基础知识1、QT是什么2、Qt的发展史3、为什么学习QT4、怎么学习QT1、工程的创建(环境的下载与安装请百度)2、创建的工程结构说明3、怎么看帮助文档1、类使用的相关介绍2. 查看所用部件(类)的相应成员函数(功…

用js让用户输入一个数累加和

需求&#xff1a;用户输入一个数&#xff0c; 计算 1 到这个数的和。 比如 用户输入的是 5&#xff0c; 则计算 1~5 之间的累加和 并且输出到控制台 <body><script>let numprompt(请输入一个数)let sum0for(let i1;i<num;i){sumi}console.log(sum)</script…

【Java进阶篇】Java中Timer实现定时调度的原理(解析)

Java中Timer实现定时调度的原理 ✔️ 引言✔️JDK 中Timer类的定义✔️拓展知识仓✔️优缺点 ✔️ 引言 Java中的Timer类是用于计划执行一项任务一次或重复固定延迟执行的简单工具。它使用一个名为TaskQueue的内部类来存储要执行的任务&#xff0c;这些任务被封装为TimerTask对…

阿里云性能测评ESSD Entry云盘、SSD云盘、ESSD和高效云盘

阿里云服务器系统盘或数据盘支持多种云盘类型&#xff0c;如高效云盘、ESSD Entry云盘、SSD云盘、ESSD云盘、ESSD PL-X云盘及ESSD AutoPL云盘等&#xff0c;阿里云百科aliyunbaike.com详细介绍不同云盘说明及单盘容量、最大/最小IOPS、最大/最小吞吐量、单路随机写平均时延等性…