NNDL 作业13 优化算法3D可视化 [HBU]

老师作业原博客:【23-24 秋学期】NNDL 作业13 优化算法3D可视化-CSDN博客

NNDL 作业13 优化算法3D可视化-CSDN博客


编程实现优化算法,并3D可视化

1. 函数3D可视化

分别画出x[0]^{2}+x[1]^{2}+x[1]^{3}+x[0]*x[1] 和 x^{2} /20+y^{2}的3D图

NNDL实验 优化算法3D轨迹 鱼书例题3D版_优化算法3d展示-CSDN博客

代码:

from mpl_toolkits.mplot3d import Axes3D
import numpy as np
from matplotlib import pyplot as plt
import torch
from nndl.op import Op# 画出x**2
class OptimizedFunction3D(Op):def __init__(self):super(OptimizedFunction3D, self).__init__()self.params = {'x': 0}self.grads = {'x': 0}def forward(self, x):self.params['x'] = xreturn x[0] ** 2 + x[1] ** 2 + x[1] ** 3 + x[0] * x[1]def backward(self):x = self.params['x']gradient1 = 2 * x[0] + x[1]gradient2 = 2 * x[1] + 3 * x[1] ** 2 + x[0]grad1 = torch.Tensor([gradient1])grad2 = torch.Tensor([gradient2])self.grads['x'] = torch.cat([grad1, grad2])# 使用numpy.meshgrid生成x1,x2矩阵,矩阵的每一行为[-3, 3],以0.1为间隔的数值
x1 = np.arange(-3, 3, 0.1)
x2 = np.arange(-3, 3, 0.1)
x1, x2 = np.meshgrid(x1, x2)
init_x = torch.Tensor(np.array([x1, x2]))model = OptimizedFunction3D()# 绘制 f_3d函数 的 三维图像
fig = plt.figure()
ax = plt.axes(projection='3d')
X = init_x[0].numpy()
Y = init_x[1].numpy()
Z = model(init_x).numpy()
ax.plot_surface(X, Y, Z, cmap='plasma')ax.set_xlabel('x1')
ax.set_ylabel('x2')
ax.set_zlabel('f(x1,x2)')
plt.show()# 画出x * x / 20 + y * y
def func(x, y):return x * x / 20 + y * ydef paint_loss_func():x = np.linspace(-50, 50, 100)  # x的绘制范围是-50到50,从改区间均匀取100个数y = np.linspace(-50, 50, 100)  # y的绘制范围是-50到50,从改区间均匀取100个数X, Y = np.meshgrid(x, y)Z = func(X, Y)fig = plt.figure()  # figsize=(10, 10))ax = Axes3D(fig)plt.xlabel('x')plt.ylabel('y')ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='plasma')plt.show()paint_loss_func()

结果:


2.加入优化算法,画出轨迹

分别画出x[0]^{2}+x[1]^{2}+x[1]^{3}+x[0]*x[1] 和 x^{2} /20+y^{2}的3D轨迹图

结合3D动画,用自己的语言,从轨迹、速度等多个角度讲解各个算法优缺点

NNDL实验 优化算法3D轨迹 pytorch版_nndl 实验三 将数据转换为 pytorch 张量-CSDN博客

代码为:
 

import torch
import numpy as np
import copy
from matplotlib import pyplot as plt
from matplotlib import animation
from itertools import zip_longest
from nndl.op import Opclass Optimizer(object):  # 优化器基类def __init__(self, init_lr, model):"""优化器类初始化"""# 初始化学习率,用于参数更新的计算self.init_lr = init_lr# 指定优化器需要优化的模型self.model = modeldef step(self):"""定义每次迭代如何更新参数"""passclass SimpleBatchGD(Optimizer):def __init__(self, init_lr, model):super(SimpleBatchGD, self).__init__(init_lr=init_lr, model=model)def step(self):# 参数更新if isinstance(self.model.params, dict):for key in self.model.params.keys():self.model.params[key] = self.model.params[key] - self.init_lr * self.model.grads[key]class Adagrad(Optimizer):def __init__(self, init_lr, model, epsilon):"""Adagrad 优化器初始化输入:- init_lr: 初始学习率 - model:模型,model.params存储模型参数值  - epsilon:保持数值稳定性而设置的非常小的常数"""super(Adagrad, self).__init__(init_lr=init_lr, model=model)self.G = {}for key in self.model.params.keys():self.G[key] = 0self.epsilon = epsilondef adagrad(self, x, gradient_x, G, init_lr):"""adagrad算法更新参数,G为参数梯度平方的累计值。"""G += gradient_x ** 2x -= init_lr / torch.sqrt(G + self.epsilon) * gradient_xreturn x, Gdef step(self):"""参数更新"""for key in self.model.params.keys():self.model.params[key], self.G[key] = self.adagrad(self.model.params[key],self.model.grads[key],self.G[key],self.init_lr)class RMSprop(Optimizer):def __init__(self, init_lr, model, beta, epsilon):"""RMSprop优化器初始化输入:- init_lr:初始学习率- model:模型,model.params存储模型参数值- beta:衰减率- epsilon:保持数值稳定性而设置的常数"""super(RMSprop, self).__init__(init_lr=init_lr, model=model)self.G = {}for key in self.model.params.keys():self.G[key] = 0self.beta = betaself.epsilon = epsilondef rmsprop(self, x, gradient_x, G, init_lr):"""rmsprop算法更新参数,G为迭代梯度平方的加权移动平均"""G = self.beta * G + (1 - self.beta) * gradient_x ** 2x -= init_lr / torch.sqrt(G + self.epsilon) * gradient_xreturn x, Gdef step(self):"""参数更新"""for key in self.model.params.keys():self.model.params[key], self.G[key] = self.rmsprop(self.model.params[key],self.model.grads[key],self.G[key],self.init_lr)class Momentum(Optimizer):def __init__(self, init_lr, model, rho):"""Momentum优化器初始化输入:- init_lr:初始学习率- model:模型,model.params存储模型参数值- rho:动量因子"""super(Momentum, self).__init__(init_lr=init_lr, model=model)self.delta_x = {}for key in self.model.params.keys():self.delta_x[key] = 0self.rho = rhodef momentum(self, x, gradient_x, delta_x, init_lr):"""momentum算法更新参数,delta_x为梯度的加权移动平均"""delta_x = self.rho * delta_x - init_lr * gradient_xx += delta_xreturn x, delta_xdef step(self):"""参数更新"""for key in self.model.params.keys():self.model.params[key], self.delta_x[key] = self.momentum(self.model.params[key],self.model.grads[key],self.delta_x[key],self.init_lr)class Nesterov(Optimizer):def __init__(self, init_lr, model, rho):"""Nesterov优化器初始化输入:- init_lr:初始学习率- model:模型,model.params存储模型参数值- rho:动量因子"""super(Nesterov, self).__init__(init_lr=init_lr, model=model)self.delta_x = {}for key in self.model.params.keys():self.delta_x[key] = 0self.rho = rhodef nesterov(self, x, gradient_x, delta_x, init_lr):"""Nesterov算法更新参数,delta_x为梯度的加权移动平均"""delta_x_prev = delta_xdelta_x = self.rho * delta_x - init_lr * gradient_xx += -self.rho * delta_x_prev + (1 + self.rho) * delta_xreturn x, delta_xdef step(self):"""参数更新"""for key in self.model.params.keys():self.model.params[key], self.delta_x[key] = self.nesterov(self.model.params[key],self.model.grads[key],self.delta_x[key],self.init_lr)class Adam(Optimizer):def __init__(self, init_lr, model, beta1, beta2, epsilon):"""Adam优化器初始化输入:- init_lr:初始学习率- model:模型,model.params存储模型参数值- beta1, beta2:移动平均的衰减率- epsilon:保持数值稳定性而设置的常数"""super(Adam, self).__init__(init_lr=init_lr, model=model)self.beta1 = beta1self.beta2 = beta2self.epsilon = epsilonself.M, self.G = {}, {}for key in self.model.params.keys():self.M[key] = 0self.G[key] = 0self.t = 1def adam(self, x, gradient_x, G, M, t, init_lr):"""adam算法更新参数输入:- x:参数- G:梯度平方的加权移动平均- M:梯度的加权移动平均- t:迭代次数- init_lr:初始学习率"""M = self.beta1 * M + (1 - self.beta1) * gradient_xG = self.beta2 * G + (1 - self.beta2) * gradient_x ** 2M_hat = M / (1 - self.beta1 ** t)G_hat = G / (1 - self.beta2 ** t)t += 1x -= init_lr / torch.sqrt(G_hat + self.epsilon) * M_hatreturn x, G, M, tdef step(self):"""参数更新"""for key in self.model.params.keys():self.model.params[key], self.G[key], self.M[key], self.t = self.adam(self.model.params[key],self.model.grads[key],self.G[key],self.M[key],self.t,self.init_lr)class OptimizedFunction3D(Op):def __init__(self):super(OptimizedFunction3D, self).__init__()self.params = {'x': 0}self.grads = {'x': 0}def forward(self, x):self.params['x'] = xreturn x[0] ** 2 + x[1] ** 2 + x[1] ** 3 + x[0] * x[1]def backward(self):x = self.params['x']gradient1 = 2 * x[0] + x[1]gradient2 = 2 * x[1] + 3 * x[1] ** 2 + x[0]grad1 = torch.Tensor([gradient1])grad2 = torch.Tensor([gradient2])self.grads['x'] = torch.cat([grad1, grad2])class Visualization3D(animation.FuncAnimation):"""    绘制动态图像,可视化参数更新轨迹    """def __init__(self, *xy_values, z_values, labels=[], colors=[], fig, ax, interval=600, blit=True, **kwargs):"""初始化3d可视化类输入:xy_values:三维中x,y维度的值z_values:三维中z维度的值labels:每个参数更新轨迹的标签colors:每个轨迹的颜色interval:帧之间的延迟(以毫秒为单位)blit:是否优化绘图"""self.fig = figself.ax = axself.xy_values = xy_valuesself.z_values = z_valuesframes = max(xy_value.shape[0] for xy_value in xy_values)self.lines = [ax.plot([], [], [], label=label, color=color, lw=2)[0]for _, label, color in zip_longest(xy_values, labels, colors)]super(Visualization3D, self).__init__(fig, self.animate, init_func=self.init_animation, frames=frames,interval=interval, blit=blit, **kwargs)def init_animation(self):# 数值初始化for line in self.lines:line.set_data([], [])# line.set_3d_properties(np.asarray([]))  # 源程序中有这一行,加上会报错。 Edit by David 2022.12.4return self.linesdef animate(self, i):# 将x,y,z三个数据传入,绘制三维图像for line, xy_value, z_value in zip(self.lines, self.xy_values, self.z_values):line.set_data(xy_value[:i, 0], xy_value[:i, 1])line.set_3d_properties(z_value[:i])return self.linesdef train_f(model, optimizer, x_init, epoch):x = x_initall_x = []losses = []for i in range(epoch):all_x.append(copy.deepcopy(x.numpy()))  # 浅拷贝 改为 深拷贝, 否则List的原值会被改变。 Edit by David 2022.12.4.loss = model(x)losses.append(loss)model.backward()optimizer.step()x = model.params['x']return torch.Tensor(np.array(all_x)), losses# 构建6个模型,分别配备不同的优化器
model1 = OptimizedFunction3D()
opt_gd = SimpleBatchGD(init_lr=0.01, model=model1)model2 = OptimizedFunction3D()
opt_adagrad = Adagrad(init_lr=0.5, model=model2, epsilon=1e-7)model3 = OptimizedFunction3D()
opt_rmsprop = RMSprop(init_lr=0.1, model=model3, beta=0.9, epsilon=1e-7)model4 = OptimizedFunction3D()
opt_momentum = Momentum(init_lr=0.01, model=model4, rho=0.9)model5 = OptimizedFunction3D()
opt_adam = Adam(init_lr=0.1, model=model5, beta1=0.9, beta2=0.99, epsilon=1e-7)model6 = OptimizedFunction3D()
opt_Nesterov = Nesterov(init_lr=0.1, model=model6, rho=0.9)models = [model1, model2, model3, model4, model5, model6]
opts = [opt_gd, opt_adagrad, opt_rmsprop, opt_momentum, opt_adam, opt_Nesterov]x_all_opts = []
z_all_opts = []# 使用不同优化器训练for model, opt in zip(models, opts):x_init = torch.FloatTensor([2, 3])x_one_opt, z_one_opt = train_f(model, opt, x_init, 150)  # epoch# 保存参数值x_all_opts.append(x_one_opt.numpy())z_all_opts.append(np.squeeze(z_one_opt))# 使用numpy.meshgrid生成x1,x2矩阵,矩阵的每一行为[-3, 3],以0.1为间隔的数值
x1 = np.arange(-3, 3, 0.1)
x2 = np.arange(-3, 3, 0.1)
x1, x2 = np.meshgrid(x1, x2)
init_x = torch.Tensor(np.array([x1, x2]))model = OptimizedFunction3D()# 绘制 f_3d函数 的 三维图像
fig = plt.figure()
ax = plt.axes(projection='3d')
X = init_x[0].numpy()
Y = init_x[1].numpy()
Z = model(init_x).numpy()  # 改为 model(init_x).numpy() David 2022.12.4
ax.plot_surface(X, Y, Z, cmap='plasma')ax.set_xlabel('x1')
ax.set_ylabel('x2')
ax.set_zlabel('f(x1,x2)')labels = ['SGD', 'AdaGrad', 'RMSprop', 'Momentum', 'Adam', 'Nesterov']
colors = ['#8B0000', '#0000FF', '#000000', '#008B00', '#FF0000']animator = Visualization3D(*x_all_opts, z_values=z_all_opts, labels=labels, colors=colors, fig=fig, ax=ax)
ax.legend(loc='upper left')plt.show()
animator.save('animation.gif')

(一直整不出来动态图,先攒着,等过了期末考试再回来研究,最近实在是太忙了)

代码:

import torch
import numpy as np
import copy
from matplotlib import pyplot as plt
from matplotlib import animation
from itertools import zip_longest
from matplotlib import cmclass Op(object):def __init__(self):passdef __call__(self, inputs):return self.forward(inputs)# 输入:张量inputs# 输出:张量outputsdef forward(self, inputs):# return outputsraise NotImplementedError# 输入:最终输出对outputs的梯度outputs_grads# 输出:最终输出对inputs的梯度inputs_gradsdef backward(self, outputs_grads):# return inputs_gradsraise NotImplementedErrorclass Optimizer(object):  # 优化器基类def __init__(self, init_lr, model):"""优化器类初始化"""# 初始化学习率,用于参数更新的计算self.init_lr = init_lr# 指定优化器需要优化的模型self.model = modeldef step(self):"""定义每次迭代如何更新参数"""passclass SimpleBatchGD(Optimizer):def __init__(self, init_lr, model):super(SimpleBatchGD, self).__init__(init_lr=init_lr, model=model)def step(self):# 参数更新if isinstance(self.model.params, dict):for key in self.model.params.keys():self.model.params[key] = self.model.params[key] - self.init_lr * self.model.grads[key]class Adagrad(Optimizer):def __init__(self, init_lr, model, epsilon):"""Adagrad 优化器初始化输入:- init_lr: 初始学习率 - model:模型,model.params存储模型参数值  - epsilon:保持数值稳定性而设置的非常小的常数"""super(Adagrad, self).__init__(init_lr=init_lr, model=model)self.G = {}for key in self.model.params.keys():self.G[key] = 0self.epsilon = epsilondef adagrad(self, x, gradient_x, G, init_lr):"""adagrad算法更新参数,G为参数梯度平方的累计值。"""G += gradient_x ** 2x -= init_lr / torch.sqrt(G + self.epsilon) * gradient_xreturn x, Gdef step(self):"""参数更新"""for key in self.model.params.keys():self.model.params[key], self.G[key] = self.adagrad(self.model.params[key],self.model.grads[key],self.G[key],self.init_lr)class RMSprop(Optimizer):def __init__(self, init_lr, model, beta, epsilon):"""RMSprop优化器初始化输入:- init_lr:初始学习率- model:模型,model.params存储模型参数值- beta:衰减率- epsilon:保持数值稳定性而设置的常数"""super(RMSprop, self).__init__(init_lr=init_lr, model=model)self.G = {}for key in self.model.params.keys():self.G[key] = 0self.beta = betaself.epsilon = epsilondef rmsprop(self, x, gradient_x, G, init_lr):"""rmsprop算法更新参数,G为迭代梯度平方的加权移动平均"""G = self.beta * G + (1 - self.beta) * gradient_x ** 2x -= init_lr / torch.sqrt(G + self.epsilon) * gradient_xreturn x, Gdef step(self):"""参数更新"""for key in self.model.params.keys():self.model.params[key], self.G[key] = self.rmsprop(self.model.params[key],self.model.grads[key],self.G[key],self.init_lr)class Momentum(Optimizer):def __init__(self, init_lr, model, rho):"""Momentum优化器初始化输入:- init_lr:初始学习率- model:模型,model.params存储模型参数值- rho:动量因子"""super(Momentum, self).__init__(init_lr=init_lr, model=model)self.delta_x = {}for key in self.model.params.keys():self.delta_x[key] = 0self.rho = rhodef momentum(self, x, gradient_x, delta_x, init_lr):"""momentum算法更新参数,delta_x为梯度的加权移动平均"""delta_x = self.rho * delta_x - init_lr * gradient_xx += delta_xreturn x, delta_xdef step(self):"""参数更新"""for key in self.model.params.keys():self.model.params[key], self.delta_x[key] = self.momentum(self.model.params[key],self.model.grads[key],self.delta_x[key],self.init_lr)
class Nesterov(Optimizer):def __init__(self, init_lr, model, rho):"""Nesterov优化器初始化输入:- init_lr:初始学习率- model:模型,model.params存储模型参数值- rho:动量因子"""super(Nesterov, self).__init__(init_lr=init_lr, model=model)self.delta_x = {}for key in self.model.params.keys():self.delta_x[key] = 0self.rho = rhodef nesterov(self, x, gradient_x, delta_x, init_lr):"""Nesterov算法更新参数,delta_x为梯度的加权移动平均"""delta_x_prev = delta_xdelta_x = self.rho * delta_x - init_lr * gradient_xx += -self.rho * delta_x_prev + (1 + self.rho) * delta_xreturn x, delta_xdef step(self):"""参数更新"""for key in self.model.params.keys():self.model.params[key], self.delta_x[key] = self.nesterov(self.model.params[key],self.model.grads[key],self.delta_x[key],self.init_lr)class Adam(Optimizer):def __init__(self, init_lr, model, beta1, beta2, epsilon):"""Adam优化器初始化输入:- init_lr:初始学习率- model:模型,model.params存储模型参数值- beta1, beta2:移动平均的衰减率- epsilon:保持数值稳定性而设置的常数"""super(Adam, self).__init__(init_lr=init_lr, model=model)self.beta1 = beta1self.beta2 = beta2self.epsilon = epsilonself.M, self.G = {}, {}for key in self.model.params.keys():self.M[key] = 0self.G[key] = 0self.t = 1def adam(self, x, gradient_x, G, M, t, init_lr):"""adam算法更新参数输入:- x:参数- G:梯度平方的加权移动平均- M:梯度的加权移动平均- t:迭代次数- init_lr:初始学习率"""M = self.beta1 * M + (1 - self.beta1) * gradient_xG = self.beta2 * G + (1 - self.beta2) * gradient_x ** 2M_hat = M / (1 - self.beta1 ** t)G_hat = G / (1 - self.beta2 ** t)t += 1x -= init_lr / torch.sqrt(G_hat + self.epsilon) * M_hatreturn x, G, M, tdef step(self):"""参数更新"""for key in self.model.params.keys():self.model.params[key], self.G[key], self.M[key], self.t = self.adam(self.model.params[key],self.model.grads[key],self.G[key],self.M[key],self.t,self.init_lr)class OptimizedFunction3D(Op):def __init__(self):super(OptimizedFunction3D, self).__init__()self.params = {'x': 0}self.grads = {'x': 0}def forward(self, x):self.params['x'] = xreturn x[0] * x[0] / 20 + x[1] * x[1] / 1# return x[0] ** 2 + x[1] ** 2 + x[1] ** 3 + x[0] * x[1]def backward(self):x = self.params['x']gradient1 = 2 * x[0] / 20gradient2 = 2 * x[1] / 1grad1 = torch.Tensor([gradient1])grad2 = torch.Tensor([gradient2])self.grads['x'] = torch.cat([grad1, grad2])class Visualization3D(animation.FuncAnimation):"""    绘制动态图像,可视化参数更新轨迹    """def __init__(self, *xy_values, z_values, labels=[], colors=[], fig, ax, interval=100, blit=True, **kwargs):"""初始化3d可视化类输入:xy_values:三维中x,y维度的值z_values:三维中z维度的值labels:每个参数更新轨迹的标签colors:每个轨迹的颜色interval:帧之间的延迟(以毫秒为单位)blit:是否优化绘图"""self.fig = figself.ax = axself.xy_values = xy_valuesself.z_values = z_valuesframes = max(xy_value.shape[0] for xy_value in xy_values)self.lines = [ax.plot([], [], [], label=label, color=color, lw=2)[0]for _, label, color in zip_longest(xy_values, labels, colors)]self.points = [ax.plot([], [], [], color=color, markeredgewidth=1, markeredgecolor='black', marker='o')[0]for _, color in zip_longest(xy_values, colors)]# print(self.lines)super(Visualization3D, self).__init__(fig, self.animate, init_func=self.init_animation, frames=frames,interval=interval, blit=blit, **kwargs)def init_animation(self):# 数值初始化for line in self.lines:line.set_data_3d([], [], [])for point in self.points:point.set_data_3d([], [], [])return self.points + self.linesdef animate(self, i):# 将x,y,z三个数据传入,绘制三维图像for line, xy_value, z_value in zip(self.lines, self.xy_values, self.z_values):line.set_data_3d(xy_value[:i, 0], xy_value[:i, 1], z_value[:i])for point, xy_value, z_value in zip(self.points, self.xy_values, self.z_values):point.set_data_3d(xy_value[i, 0], xy_value[i, 1], z_value[i])return self.points + self.linesdef train_f(model, optimizer, x_init, epoch):x = x_initall_x = []losses = []for i in range(epoch):all_x.append(copy.deepcopy(x.numpy()))  # 浅拷贝 改为 深拷贝, 否则List的原值会被改变。 Edit by David 2022.12.4.loss = model(x)losses.append(loss)model.backward()optimizer.step()x = model.params['x']return torch.Tensor(np.array(all_x)), losses# 构建6个模型,分别配备不同的优化器
model1 = OptimizedFunction3D()
opt_gd = SimpleBatchGD(init_lr=0.95, model=model1)model2 = OptimizedFunction3D()
opt_adagrad = Adagrad(init_lr=1.5, model=model2, epsilon=1e-7)model3 = OptimizedFunction3D()
opt_rmsprop = RMSprop(init_lr=0.05, model=model3, beta=0.9, epsilon=1e-7)model4 = OptimizedFunction3D()
opt_momentum = Momentum(init_lr=0.1, model=model4, rho=0.9)model5 = OptimizedFunction3D()
opt_adam = Adam(init_lr=0.3, model=model5, beta1=0.9, beta2=0.99, epsilon=1e-7)model6 = OptimizedFunction3D()
opt_Nesterov = Nesterov(init_lr=0.1, model=model6, rho=0.9)  # 将 model4 改为 model6models = [model1, model2, model3, model4, model5, model6]
opts = [opt_gd, opt_adagrad, opt_rmsprop, opt_momentum, opt_adam, opt_Nesterov]x_all_opts = []
z_all_opts = []# 使用不同优化器训练
for model, opt in zip(models, opts):x_init = torch.FloatTensor([-7, 2])x_one_opt, z_one_opt = train_f(model, opt, x_init, 100)  # epoch# 保存参数值x_all_opts.append(x_one_opt.numpy())z_all_opts.append(np.squeeze(z_one_opt))# 使用numpy.meshgrid生成x1,x2矩阵,矩阵的每一行为[-3, 3],以0.1为间隔的数值
x1 = np.arange(-10, 10, 0.01)
x2 = np.arange(-5, 5, 0.01)
x1, x2 = np.meshgrid(x1, x2)
init_x = torch.Tensor(np.array([x1, x2]))model = OptimizedFunction3D()# 绘制 f_3d函数 的 三维图像
fig = plt.figure()
ax = plt.axes(projection='3d')
X = init_x[0].numpy()
Y = init_x[1].numpy()
Z = model(init_x).numpy()  # 改为 model(init_x).numpy() David 2022.12.4
surf = ax.plot_surface(X, Y, Z, edgecolor='grey', cmap=cm.coolwarm)
# fig.colorbar(surf, shrink=0.5, aspect=1)
# ax.set_zlim(-3, 2)
ax.set_xlabel('x1')
ax.set_ylabel('x2')
ax.set_zlabel('f(x1,x2)')labels = ['SGD', 'AdaGrad', 'RMSprop', 'Momentum', 'Adam', 'Nesterov']
colors = ['#8B0000', '#0000FF', '#000000', '#008B00', '#FF0000']animator = Visualization3D(*x_all_opts, z_values=z_all_opts, labels=labels, colors=colors, fig=fig, ax=ax)
ax.legend(loc='upper right')plt.show()
# animator.save('teaser' + '.gif', writer='imagemagick',fps=10) # 效果不好,估计被挡住了…… 有待进一步提高 Edit by David 2022.12.4

图像结果:


3.复现CS231经典动画

结合3D动画,用自己的语言,从轨迹、速度等多个角度讲解各个算法优缺点

NNDL实验 优化算法3D轨迹 复现cs231经典动画_深度学习 优化算法 动画展示-CSDN博客

Animations that may help your intuitions about the learning process dynamics. 

Left: Contours of a loss surface and time evolution of different optimization algorithms. Notice the "overshooting" behavior of momentum-based methods, which make the optimization look like a ball rolling down the hill. 

import torch
import numpy as np
import copy
from matplotlib import pyplot as plt
from matplotlib import animation
from itertools import zip_longest
from matplotlib import cmclass Op(object):def __init__(self):passdef __call__(self, inputs):return self.forward(inputs)# 输入:张量inputs# 输出:张量outputsdef forward(self, inputs):# return outputsraise NotImplementedError# 输入:最终输出对outputs的梯度outputs_grads# 输出:最终输出对inputs的梯度inputs_gradsdef backward(self, outputs_grads):# return inputs_gradsraise NotImplementedErrorclass Optimizer(object):  # 优化器基类def __init__(self, init_lr, model):"""优化器类初始化"""# 初始化学习率,用于参数更新的计算self.init_lr = init_lr# 指定优化器需要优化的模型self.model = modeldef step(self):"""定义每次迭代如何更新参数"""passclass SimpleBatchGD(Optimizer):def __init__(self, init_lr, model):super(SimpleBatchGD, self).__init__(init_lr=init_lr, model=model)def step(self):# 参数更新if isinstance(self.model.params, dict):for key in self.model.params.keys():self.model.params[key] = self.model.params[key] - self.init_lr * self.model.grads[key]class Adagrad(Optimizer):def __init__(self, init_lr, model, epsilon):"""Adagrad 优化器初始化输入:- init_lr: 初始学习率 - model:模型,model.params存储模型参数值  - epsilon:保持数值稳定性而设置的非常小的常数"""super(Adagrad, self).__init__(init_lr=init_lr, model=model)self.G = {}for key in self.model.params.keys():self.G[key] = 0self.epsilon = epsilondef adagrad(self, x, gradient_x, G, init_lr):"""adagrad算法更新参数,G为参数梯度平方的累计值。"""G += gradient_x ** 2x -= init_lr / torch.sqrt(G + self.epsilon) * gradient_xreturn x, Gdef step(self):"""参数更新"""for key in self.model.params.keys():self.model.params[key], self.G[key] = self.adagrad(self.model.params[key],self.model.grads[key],self.G[key],self.init_lr)class RMSprop(Optimizer):def __init__(self, init_lr, model, beta, epsilon):"""RMSprop优化器初始化输入:- init_lr:初始学习率- model:模型,model.params存储模型参数值- beta:衰减率- epsilon:保持数值稳定性而设置的常数"""super(RMSprop, self).__init__(init_lr=init_lr, model=model)self.G = {}for key in self.model.params.keys():self.G[key] = 0self.beta = betaself.epsilon = epsilondef rmsprop(self, x, gradient_x, G, init_lr):"""rmsprop算法更新参数,G为迭代梯度平方的加权移动平均"""G = self.beta * G + (1 - self.beta) * gradient_x ** 2x -= init_lr / torch.sqrt(G + self.epsilon) * gradient_xreturn x, Gdef step(self):"""参数更新"""for key in self.model.params.keys():self.model.params[key], self.G[key] = self.rmsprop(self.model.params[key],self.model.grads[key],self.G[key],self.init_lr)class Momentum(Optimizer):def __init__(self, init_lr, model, rho):"""Momentum优化器初始化输入:- init_lr:初始学习率- model:模型,model.params存储模型参数值- rho:动量因子"""super(Momentum, self).__init__(init_lr=init_lr, model=model)self.delta_x = {}for key in self.model.params.keys():self.delta_x[key] = 0self.rho = rhodef momentum(self, x, gradient_x, delta_x, init_lr):"""momentum算法更新参数,delta_x为梯度的加权移动平均"""delta_x = self.rho * delta_x - init_lr * gradient_xx += delta_xreturn x, delta_xdef step(self):"""参数更新"""for key in self.model.params.keys():self.model.params[key], self.delta_x[key] = self.momentum(self.model.params[key],self.model.grads[key],self.delta_x[key],self.init_lr)class Nesterov(Optimizer):def __init__(self, init_lr, model, rho):"""Nesterov优化器初始化输入:- init_lr:初始学习率- model:模型,model.params存储模型参数值- rho:动量因子"""super(Nesterov, self).__init__(init_lr=init_lr, model=model)self.delta_x = {}for key in self.model.params.keys():self.delta_x[key] = 0self.rho = rhodef nesterov(self, x, gradient_x, delta_x, init_lr):"""Nesterov算法更新参数,delta_x为梯度的加权移动平均"""delta_x_prev = delta_xdelta_x = self.rho * delta_x - init_lr * gradient_xx += -self.rho * delta_x_prev + (1 + self.rho) * delta_xreturn x, delta_xdef step(self):"""参数更新"""for key in self.model.params.keys():self.model.params[key], self.delta_x[key] = self.nesterov(self.model.params[key],self.model.grads[key],self.delta_x[key],self.init_lr)class Adam(Optimizer):def __init__(self, init_lr, model, beta1, beta2, epsilon):"""Adam优化器初始化输入:- init_lr:初始学习率- model:模型,model.params存储模型参数值- beta1, beta2:移动平均的衰减率- epsilon:保持数值稳定性而设置的常数"""super(Adam, self).__init__(init_lr=init_lr, model=model)self.beta1 = beta1self.beta2 = beta2self.epsilon = epsilonself.M, self.G = {}, {}for key in self.model.params.keys():self.M[key] = 0self.G[key] = 0self.t = 1def adam(self, x, gradient_x, G, M, t, init_lr):"""adam算法更新参数输入:- x:参数- G:梯度平方的加权移动平均- M:梯度的加权移动平均- t:迭代次数- init_lr:初始学习率"""M = self.beta1 * M + (1 - self.beta1) * gradient_xG = self.beta2 * G + (1 - self.beta2) * gradient_x ** 2M_hat = M / (1 - self.beta1 ** t)G_hat = G / (1 - self.beta2 ** t)t += 1x -= init_lr / torch.sqrt(G_hat + self.epsilon) * M_hatreturn x, G, M, tdef step(self):"""参数更新"""for key in self.model.params.keys():self.model.params[key], self.G[key], self.M[key], self.t = self.adam(self.model.params[key],self.model.grads[key],self.G[key],self.M[key],self.t,self.init_lr)class OptimizedFunction3D(Op):def __init__(self):super(OptimizedFunction3D, self).__init__()self.params = {'x': 0}self.grads = {'x': 0}def forward(self, x):self.params['x'] = xreturn - x[0] * x[0] / 2 + x[1] * x[1] / 1  # x[0] ** 2 + x[1] ** 2 + x[1] ** 3 + x[0] * x[1]def backward(self):x = self.params['x']gradient1 = - 2 * x[0] / 2gradient2 = 2 * x[1] / 1grad1 = torch.Tensor([gradient1])grad2 = torch.Tensor([gradient2])self.grads['x'] = torch.cat([grad1, grad2])class Visualization3D(animation.FuncAnimation):"""    绘制动态图像,可视化参数更新轨迹    """def __init__(self, *xy_values, z_values, labels=[], colors=[], fig, ax, interval=100, blit=True, **kwargs):"""初始化3d可视化类输入:xy_values:三维中x,y维度的值z_values:三维中z维度的值labels:每个参数更新轨迹的标签colors:每个轨迹的颜色interval:帧之间的延迟(以毫秒为单位)blit:是否优化绘图"""self.fig = figself.ax = axself.xy_values = xy_valuesself.z_values = z_valuesframes = max(xy_value.shape[0] for xy_value in xy_values)self.lines = [ax.plot([], [], [], label=label, color=color, lw=2)[0]for _, label, color in zip_longest(xy_values, labels, colors)]self.points = [ax.plot([], [], [], color=color, markeredgewidth=1, markeredgecolor='black', marker='o')[0]for _, color in zip_longest(xy_values, colors)]# print(self.lines)super(Visualization3D, self).__init__(fig, self.animate, init_func=self.init_animation, frames=frames,interval=interval, blit=blit, **kwargs)def init_animation(self):# 数值初始化for line in self.lines:line.set_data_3d([], [], [])for point in self.points:point.set_data_3d([], [], [])return self.points + self.linesdef animate(self, i):# 将x,y,z三个数据传入,绘制三维图像for line, xy_value, z_value in zip(self.lines, self.xy_values, self.z_values):line.set_data_3d(xy_value[:i, 0], xy_value[:i, 1], z_value[:i])for point, xy_value, z_value in zip(self.points, self.xy_values, self.z_values):point.set_data_3d(xy_value[i, 0], xy_value[i, 1], z_value[i])return self.points + self.linesdef train_f(model, optimizer, x_init, epoch):x = x_initall_x = []losses = []for i in range(epoch):all_x.append(copy.deepcopy(x.numpy()))  # 浅拷贝 改为 深拷贝, 否则List的原值会被改变。 Edit by David 2022.12.4.loss = model(x)losses.append(loss)model.backward()optimizer.step()x = model.params['x']return torch.Tensor(np.array(all_x)), losses# 构建5个模型,分别配备不同的优化器
model1 = OptimizedFunction3D()
opt_gd = SimpleBatchGD(init_lr=0.05, model=model1)model2 = OptimizedFunction3D()
opt_adagrad = Adagrad(init_lr=0.05, model=model2, epsilon=1e-7)model3 = OptimizedFunction3D()
opt_rmsprop = RMSprop(init_lr=0.05, model=model3, beta=0.9, epsilon=1e-7)model4 = OptimizedFunction3D()
opt_momentum = Momentum(init_lr=0.05, model=model4, rho=0.9)model5 = OptimizedFunction3D()
opt_adam = Adam(init_lr=0.05, model=model5, beta1=0.9, beta2=0.99, epsilon=1e-7)model6 = OptimizedFunction3D()
opt_Nesterov = Nesterov(init_lr=0.1, model=model6, rho=0.9)models = [model1, model2, model3, model4, model5, model6]
opts = [opt_gd, opt_adagrad, opt_rmsprop, opt_momentum, opt_adam, opt_Nesterov]x_all_opts = []
z_all_opts = []# 使用不同优化器训练for model, opt in zip(models, opts):x_init = torch.FloatTensor([0.00001, 0.5])x_one_opt, z_one_opt = train_f(model, opt, x_init, 100)  # epoch# 保存参数值x_all_opts.append(x_one_opt.numpy())z_all_opts.append(np.squeeze(z_one_opt))# 使用numpy.meshgrid生成x1,x2矩阵,矩阵的每一行为[-3, 3],以0.1为间隔的数值
x1 = np.arange(-1, 2, 0.01)
x2 = np.arange(-1, 1, 0.05)
x1, x2 = np.meshgrid(x1, x2)
init_x = torch.Tensor(np.array([x1, x2]))model = OptimizedFunction3D()# 绘制 f_3d函数 的 三维图像
fig = plt.figure()
ax = plt.axes(projection='3d')
X = init_x[0].numpy()
Y = init_x[1].numpy()
Z = model(init_x).numpy()  # 改为 model(init_x).numpy() David 2022.12.4
surf = ax.plot_surface(X, Y, Z, edgecolor='grey', cmap=cm.coolwarm)
# fig.colorbar(surf, shrink=0.5, aspect=1)
ax.set_zlim(-3, 2)
ax.set_xlabel('x1')
ax.set_ylabel('x2')
ax.set_zlabel('f(x1,x2)')labels = ['SGD', 'AdaGrad', 'RMSprop', 'Momentum', 'Adam', 'Nesterov']
colors = ['#8B0000', '#0000FF', '#000000', '#008B00', '#FF0000']animator = Visualization3D(*x_all_opts, z_values=z_all_opts, labels=labels, colors=colors, fig=fig, ax=ax)
ax.legend(loc='upper right')plt.show()
# animator.save('teaser' + '.gif', writer='imagemagick',fps=10) # 效果不好,估计被挡住了…… 有待进一步提高 Edit by David 2022.12.4
# save不好用,不费劲了,安装个软件做gif https://pc.qq.com/detail/13/detail_23913.html


4. 结合3D动画,用自己的语言,从轨迹、速度等多个角度讲解各个算法优缺点


SGD
SGD较于其他几个算法,速度相对较慢,会呈现“之”字型的轨迹,并且在cs231经典动画中,SGD出现了陷入局部最小值,出不来的情况。

所以根据动画可以看出SGD的缺点有:

(1)容易陷入局部最优

(2)速度相对较慢且需要调整学习率

AdaGrad
可以看出,AdaGrad图中的轨迹图都是刚开始速度明显大于RMSprop和SGD算法的,偶尔比Momentum和Nesterov还要快,但是随着时间的增长,AdaGrad会成为图中速度最慢的算法。方向上,该算法的方向一直都很准确,并且明显解决了SGD的“之”字型问题,收敛稳定。

相较于SGD算法,AdaGrad的优点:

(1)自适应算法:AdaGrad算法根据每个参数的历史梯度信息来自适应地调整学习率,使得梯度不会太大或太小。

(2)“之”字形的变动程度衰减,呈现稳定的向最优点收敛

缺点:

学习率衰减过快,可能发生早停现象:随着训练的进行,AdaGrad会累积历史梯度的平方和,导致学习率不断减小。在训练后期,学习率可能会变得非常小,甚至接近于零,导致训练过早停止。

RMSprop
RMSprop的轨迹图,速度上很稳定,在前期比AdaGrad要慢,但是后期AdaGrad很慢的时候,RMSprop依然稳定前进。在轨迹方向上,基本和AdaGrad是一样的。

所以相较于AdaGrad而言,RMSprop在它的基础上进行改进,优点为:

收敛速度快解决了AdaGrad算法的早停问题: 引入了衰减率,不会一直累积梯度平方,而是通过梯度平方的指数衰减移动平均来调整学习率,解决了AdaGrad的早衰问题。

Momentum
Momentum算法在速度上,要明显快于前几个函数,跟Nesterov差不多,但是在方向上,Momentum算法每次都是去错的方向转几次,然后才能修正过来。所以Momentum的优点为:

很快的收敛速度,特别是对于类似鞍点的问题,由于动量维持了运动,能够更有效地收敛至局部最小值或平坦区域。但是方向要相对差些,之前的动量仍然会对下一次的下降造成影响,导致Momentum其实有一点大幅度的“之”字型的轨迹。

Nesterov
Nesterov算法的方向和速度效果都是很好的,速度上,它是最快的;方向上,轨迹正确性要好于Momentum,但是仍然要比AdaGrad、RMSprop要差些。Nesterov是对Momentum进行的改进,不仅仅根据当前梯度调整位置,而是根据当前动量在预期的未来位置计算梯度。它的优点为速度快且轨迹呈现出更加平滑、更有方向性的路径朝向最优点。

Adam
根据3D轨迹图:Adam算法的轨迹为稳定,快速的向最小值收敛,就速度和方向的正确性、稳定性而言,都是居中。所以Adam算法的优点就是结合了调整学习率的算法:RMSprop和梯度估计修正算法:Momentum二者的优点:稳定、快速,实用性较高。 
 


这是我的另一篇博客总结的优化算法,需要期末复习的同学可以点击链接:

NNDL学期知识点总结 [HBU]-CSDN博客

动图我一直贴不上去,考完试了回来研究研究,怎么才能贴上动图。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/319159.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【12】ES6:模块化

一、JavaScript 模块化 JavaScript 模块化是一种组织和管理 JavaScript 代码的方法,它将代码分割为独立的模块,每个模块都有自己的作用域,并且可以导出和导入功能。模块化可以提高代码的可维护性、可重用性和可扩展性。 在JavaScript中&…

HCIA-Datacom题库(自己整理分类的)——其他网络协议【完】

(一)单选 下列属于链路状态协议的是? Direct static FTP OSPF 解析: FTP:文件传输协议 OSPF:链路状态路由协议 如下图所示的网络主机A通过Telnet登录到路由器A然后在远程的界面通过FTP获取路由器的配置文件&…

2020年认证杯SPSSPRO杯数学建模B题(第二阶段)分布式无线广播全过程文档及程序

2020年认证杯SPSSPRO杯数学建模 B题 分布式无线广播 原题再现: 以广播的方式来进行无线网通信,必须解决发送互相冲突的问题。无线网的许多基础通信协议都使用了令牌的方法来解决这个问题,在同一个时间段内,只有唯一一个拿到令牌…

系列七、Ribbon

一、Ribbon 1.1、概述 Ribbon是基于Netflix Ribbon实现的一套客户端负载均衡的工具,是Netflix发布的一款开源项目,其主要功能是提供客户端的软件负载均衡算法和服务调用,Ribbon客户端组件提供一系列完善的配置项,例如&#xff1a…

Linux 进程(七) 进程地址空间

虚拟地址/线性地址 学习c语言的时候我们经常会用到 “&” 符号,以及下面这张表,那么取出来的地址是否对应的是真实的物理地址呢?下面我们来写代码一步一步的验证。 从上面这张图不难看出,从正文代码,到命令行参数环…

代码随想录刷题笔记(DAY 8)

今日总结:最后一道题解决的比较糟糕,后续会补上新解法,今天还是将中心放在了前端。 Day 8 01. 反转字符串(No. 344) 题目链接 代码随想录题解 1.1 题目 编写一个函数,其作用是将输入的字符串反转过来。…

imgaug库指南(一):从入门到精通的【图像增强】之旅

文章目录 引言imgaug简介安装和导入imgaug代码示例imgaug的强大之处和用途小结结尾 引言 在深度学习和计算机视觉的世界里,数据是模型训练的基石,其质量与数量直接影响着模型的性能。然而,获取大量高质量的标注数据往往需要耗费大量的时间和…

Python Web框架FastAPI——一个比Flask和Tornada更高性能的API框架

目录 一、FastAPI框架概述 二、FastAPI与Flask和Tornado的性能对比 1、路由性能 2、请求处理性能 3、内存占用 三、FastAPI的优点与特色 四、代码示例 五、注意事项 六、结论 在当今的软件开发领域,快速、高效地构建API成为了许多项目的关键需求。为了满足…

OpenCV中实现图像旋转的方法

OpenCV中实现图像旋转的方法 函数:cv2.flip() 功能:水平或者垂直翻转 格式:dst cv2.flip(src,flipCode[,dst]) 参数说明: src:输入图像 dst:和原图像具有相同大小、类型的目标图像。 flipCode&#…

Z-score 因子的深入思考

最新(2024 年 1 月)出版的 SC 技术分析(Techical Analysis of Stock & Commodities)的第 4 条文章给到了 Z-score,原文标题为《Z-score: How to use it in Trading》。今天的笔记,就借此机会&#xff0…

wireshark抓包分析HTTP协议,HTTP协议执行流程,

「作者主页」:士别三日wyx 「作者简介」:CSDN top100、阿里云博客专家、华为云享专家、网络安全领域优质创作者 「推荐专栏」:对网络安全感兴趣的小伙伴可以关注专栏《网络安全入门到精通》 使用WireShark工具抓取「HTTP协议」的数据包&#…

【壹基金儿童服务站】瑞金站:清捡垃圾 美化环境

1月1日下午,瑞金赋能公益和象湖镇东升社区新时代文明实践站在壹基金儿童社区服务站开展“我是环保小卫士——走进小区捡垃圾“主题活动,帮助小朋友树立爱护环境从小做起,用自己的双手照顾身边的环境,争做环保小卫士,为…