【Matlab】神经网络遗传算法函数极值寻优——非线性函数求极值

目前关于神经网络遗传算法函数极值寻优——非线性函数求极值的博客资源已经不少了,我看了下来源,最初的应该是来自于Matlab中文论坛,论坛出版的《MATLAB神经网络30个案例分析》第4章就是《神经网络遗传算法函数极值寻优——非线性函数极值寻优》。
【简书】神经网络遗传算法函数极值寻优
【博客网】MATLAB神经网络(4) 神经网络遗传算法函数极值寻优——非线性函数极值寻优

参考前人的文章资源,本篇博客将对神经网络遗传算法函数极值寻优进行解析,说明代码使用方法。

1.背景条件

要求:对于未知模型(函数表达式未知)求解极值。
条件:已知模型的一些输入输出数据。

程序的示例是根据用神经网络遗传算法寻优非线性函数 y = x 1 2 + x 2 2 y = x_1^2+x_2^2 y=x12+x22的极值,易知函数有极小值0,极小值点为(0, 0),已知的只有一些输入输出数据(用rand函数生成输入,然后代入表达式生成输出):

for i=1:4000input(i,:)=10*rand(1,2)-5;output(i)=input(i,1)^2+input(i,2)^2;
end

2.算法框架

对于未知的非线性函数,仅通过函数的输入输出数据难以准确寻找函数极值。这类问题可以通过神经网络结合遗传算法求解,利用神经网络的非线性拟合能力遗传算法的非线性寻优能力寻找函数极值。

在这里插入图片描述

3.重要函数说明

newff

BP神经网络参数设置函数函数
函数形式:

net = newff(P, T, S, TF, BTF, BLF, PF, IPF, OPF, DDF)

例如:

net=newff(inputn,outputn,15); % 单隐含层BP神经网络,隐含层的节点数是15

P:输入数据矩阵。
T:输出数据矩阵。
S:隐含层节点数。
通过配置S向量,可以方便地得到包含多个隐含层的BP神经网络,如下面语句:

net=newff(inputn, outputn, [5,5]); % 双隐含层BP神经网络,每个隐含层的节点数都是5

train

BP神经网络训练函数
函数形式:

[net, tr] = train(NET, X, T, Pi, Ai)

例如:

net=train(net,inputn,outputn);

NET:待训练网络。
X:输入数据矩阵。
T:输出数据矩阵。

sim

BP神经网络预测函数
函数形式:

y=sim(net, x)

例如:

an=sim(net,inputn_test);

net :训练好的网络。
x:输入数据。

4.完整代码

data.m

用于生成神经网络拟合的原始数据。

for i=1:4000input(i,:)=10*rand(1,2)-5;output(i)=input(i,1)^2+input(i,2)^2;
end
output=output';save data input output

BP.m

用函数输入输出数据训练BP神经网络,使训练后的网络能够拟合非线性函数输出,保存训练好的网络用于计算个体适应度值。根据非线性函数方程随机得到该函数的4000组输入输出数据,存储于data中,其中input为函数输入数据,output为函数对应输出数据,从中随机抽取3900组训练数据训练网络,100组测试数据测试网络拟合性能。最后保存训练好的网络。

%% 清空环境变量
clc
%cleartic
%% 训练数据预测数据提取及归一化
%加载输入输出数据
load data input output%从1到2000间随机排序
k=rand(1,4000);
[m,n]=sort(k);%找出训练数据和预测数据
input_train=input(n(1:3900),:)';
output_train=output(n(1:3900),:)';
input_test=input(n(3901:4000),:)';
output_test=output(n(3901:4000),:)';%选连样本输入输出数据归一化
[inputn,inputps]=mapminmax(input_train);
[outputn,outputps]=mapminmax(output_train);%% BP网络训练
% %初始化网络结构
net=newff(inputn,outputn,5);% 设置网络参数:迭代次数、学习率和目标
net.trainParam.epochs=100;
net.trainParam.lr=0.1;
net.trainParam.goal=0.0000004;%网络训练
net=train(net,inputn,outputn);%% BP网络预测
%预测数据归一化
inputn_test=mapminmax('apply',input_test,inputps);%网络预测输出
an=sim(net,inputn_test);%网络输出反归一化
BPoutput=mapminmax('reverse',an,outputps);%% 结果分析figure(1)
plot(BPoutput,':og')
hold on
plot(output_test,'-*');
legend('预测输出','期望输出','fontsize',12)
title('BP网络预测输出','fontsize',12)
xlabel('样本','fontsize',12)
ylabel('输出','fontsize',12)
%预测误差
error=BPoutput-output_test;figure(2)
plot(error,'-*')
title('神经网络预测误差')figure(3)
plot((output_test-BPoutput)./BPoutput,'-*');
title('神经网络预测误差百分比')errorsum=sum(abs(error))tocsave data net inputps outputps

fun.m

把训练好的BP神经网络预测输出作为个体适应度值。

function fitness = fun(x)
% 函数功能:计算该个体对应适应度值
% x           input     个体
% fitness     output    个体适应度值%
load data net inputps outputps%数据归一化
x=x';
inputn_test=mapminmax('apply',x,inputps);%网络预测输出
an=sim(net,inputn_test);%网络输出反归一化
fitness=mapminmax('reverse',an,outputps);

对于求极小值的函数,适应度可以设为BP网络预测结果,如果需要求极大值,可以对适应度取反。

select.m

选择操作采用轮盘赌法从种群中选择适应度好的个体组成新种群。

function ret=select(individuals,sizepop)
% 本函数对每一代种群中的染色体进行选择,以进行后面的交叉和变异
% individuals input  : 种群信息
% sizepop     input  : 种群规模
% ret         output : 经过选择后的种群fitness1=1./individuals.fitness;
sumfitness=sum(fitness1);
sumf=fitness1./sumfitness;
index=[]; 
for i=1:sizepop   %转sizepop次轮盘pick=rand;while pick==0    pick=rand;        endfor i=1:sizepop    pick=pick-sumf(i);        if pick<0        index=[index i];            break;  %寻找落入的区间,此次转轮盘选中了染色体i,注意:在转sizepop次轮盘的过程中,有可能会重复选择某些染色体endend
end
individuals.chrom=individuals.chrom(index,:);
individuals.fitness=individuals.fitness(index);
ret=individuals;

Cross.m

交叉操作从种群中选择两个个体,按一定概率交叉得到新个体。

function ret=Cross(pcross,lenchrom,chrom,sizepop,bound)
%本函数完成交叉操作
% pcorss                input  : 交叉概率
% lenchrom              input  : 染色体的长度
% chrom     input  : 染色体群
% sizepop               input  : 种群规模
% ret                   output : 交叉后的染色体for i=1:sizepop  %每一轮for循环中,可能会进行一次交叉操作,染色体是随机选择的,交叉位置也是随机选择的,%但该轮for循环中是否进行交叉操作则由交叉概率决定(continue控制)% 随机选择两个染色体进行交叉pick=rand(1,2);while prod(pick)==0pick=rand(1,2);endindex=ceil(pick.*sizepop);% 交叉概率决定是否进行交叉pick=rand;while pick==0pick=rand;endif pick>pcrosscontinue;endflag=0;while flag==0% 随机选择交叉位pick=rand;while pick==0pick=rand;endpos=ceil(pick.*sum(lenchrom)); %随机选择进行交叉的位置,即选择第几个变量进行交叉,注意:两个染色体交叉的位置相同pick=rand; %交叉开始v1=chrom(index(1),pos);v2=chrom(index(2),pos);chrom(index(1),pos)=pick*v2+(1-pick)*v1;chrom(index(2),pos)=pick*v1+(1-pick)*v2; %交叉结束flag1=test(lenchrom,bound,chrom(index(1),:));  %检验染色体1的可行性flag2=test(lenchrom,bound,chrom(index(2),:));  %检验染色体2的可行性if   flag1*flag2==0flag=0;else flag=1;end    %如果两个染色体不是都可行,则重新交叉endend
ret=chrom;

Mutation.m

变异操作从种群中随机选择一个个体,按一定概率变异得到新个体。

function ret=Mutation(pmutation,lenchrom,chrom,sizepop,pop,bound)
% 本函数完成变异操作
% pcorss                input  : 变异概率
% lenchrom              input  : 染色体长度
% chrom     input  : 染色体群
% sizepop               input  : 种群规模
% opts                  input  : 变异方法的选择
% pop                   input  : 当前种群的进化代数和最大的进化代数信息
% ret                   output : 变异后的染色体
for i=1:sizepop   %每一轮for循环中,可能会进行一次变异操作,染色体是随机选择的,变异位置也是随机选择的,%但该轮for循环中是否进行变异操作则由变异概率决定(continue控制)% 随机选择一个染色体进行变异pick=rand;while pick==0pick=rand;endindex=ceil(pick*sizepop);% 变异概率决定该轮循环是否进行变异pick=rand;if pick>pmutationcontinue;endflag=0;while flag==0% 变异位置pick=rand;while pick==0      pick=rand;endpos=ceil(pick*sum(lenchrom));  %随机选择了染色体变异的位置,即选择了第pos个变量进行变异v=chrom(i,pos);        v1=v-bound(pos,1);        v2=bound(pos,2)-v;        pick=rand; %变异开始        if pick>0.5delta=v2*(1-pick^((1-pop(1)/pop(2))^2));chrom(i,pos)=v+delta;elsedelta=v1*(1-pick^((1-pop(1)/pop(2))^2));chrom(i,pos)=v-delta;end   %变异结束flag=test(lenchrom,bound,chrom(i,:));     %检验染色体的可行性end
end
ret=chrom;

主函数 Genetic.m

%% 清空环境变量
clc
% clear%% 初始化遗传算法参数
%初始化参数
maxgen=100;                         %进化代数,即迭代次数
sizepop=20;                        %种群规模
pcross=[0.4];                       %交叉概率选择,0和1之间
pmutation=[0.2];                    %变异概率选择,0和1之间lenchrom=[1 1];          %每个变量的字串长度,如果是浮点变量,则长度都为1
bound=[-5 5;-5 5];  %数据范围individuals=struct('fitness',zeros(1,sizepop), 'chrom',[]);  %将种群信息定义为一个结构体
avgfitness=[];                      %每一代种群的平均适应度
bestfitness=[];                     %每一代种群的最佳适应度
bestchrom=[];                       %适应度最好的染色体%% 初始化种群计算适应度值
% 初始化种群
for i=1:sizepop%随机产生一个种群individuals.chrom(i,:)=Code(lenchrom,bound);   x=individuals.chrom(i,:);%计算适应度individuals.fitness(i)=fun(x);   %染色体的适应度
end
%找最好的染色体
[bestfitness bestindex]=min(individuals.fitness);
bestchrom=individuals.chrom(bestindex,:);  %最好的染色体
avgfitness=sum(individuals.fitness)/sizepop; %染色体的平均适应度
% 记录每一代进化中最好的适应度和平均适应度
trace=[avgfitness bestfitness]; %% 迭代寻优
% 进化开始
for i=1:maxgeni% 选择individuals=Select(individuals,sizepop); avgfitness=sum(individuals.fitness)/sizepop;% 交叉individuals.chrom=Cross(pcross,lenchrom,individuals.chrom,sizepop,bound);% 变异individuals.chrom=Mutation(pmutation,lenchrom,individuals.chrom,sizepop,[i maxgen],bound);% 计算适应度 for j=1:sizepopx=individuals.chrom(j,:); %解码individuals.fitness(j)=fun(x);   end%找到最小和最大适应度的染色体及它们在种群中的位置[newbestfitness,newbestindex]=min(individuals.fitness);[worestfitness,worestindex]=max(individuals.fitness);% 代替上一次进化中最好的染色体if bestfitness>newbestfitnessbestfitness=newbestfitness;bestchrom=individuals.chrom(newbestindex,:);endindividuals.chrom(worestindex,:)=bestchrom;individuals.fitness(worestindex)=bestfitness;avgfitness=sum(individuals.fitness)/sizepop;trace=[trace;avgfitness bestfitness]; %记录每一代进化中最好的适应度和平均适应度
end
%进化结束%% 结果分析
[r c]=size(trace);
plot([1:r]',trace(:,2),'r-');
title('适应度曲线','fontsize',12);
xlabel('进化代数','fontsize',12);ylabel('适应度','fontsize',12);
axis([0,100,0,1])
disp('适应度                   变量');
x=bestchrom;
% 窗口显示
disp([bestfitness x]);

5.代码使用说明

1. 上述代码运行顺序

data.m 生成数据(如果已有 input output 数据可跳过),
BP.m 进行BP神经网络训练及函数拟合,
Genetic.m(主函数)利用遗传算法求极值。

2. 求最大值的方法

上述代码用于求解最小值,对于求解最大值的需求,可以在适应度函数里面,对适应度计算结果求反,把求解最大值的问题转化为求解最小值的问题。

例如:对于非线性函数 y = − ( x 1 2 + x 2 2 ) + 4 y = -(x_1^2+x_2^2)+4 y=(x12+x22)+4

for i=1:4000input(i,:)=10*rand(1,2)-5;output(i)=-(input(i,1)^2+input(i,2)^2)+4;
end

求最大值时,需要在 fun.m 里面,修改最后一行代码:

fitness=-mapminmax('reverse',an,outputps);

最终运行找到的极值点为(0.4714, -0.0319),适应度为-3.7554,极值需要对适应度取反,为3.7554。

注意:每次运行结果不尽相同。

6.代码运行结果

y = x 1 2 + x 2 2 y = x_1^2+x_2^2 y=x12+x22 求极小值

BP神经网络拟合

运行BP.m之后:
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

输出:

errorsum =1.2004历时 1.386858 秒。

注意:每次运行结果不尽相同。

遗传算法寻优

运行主函数 Genetic.m之后:
在这里插入图片描述

输出:

...
i =100适应度                   变量0.0247    0.0001    0.0001

最终结果最优个体为(0.0001,0.0001),适应度为0.0247,与实际最小值点(0,0)和最小值0已经很接近了。

注意:每次运行结果不尽相同。

参考

【知乎】遗传算法基础、MATLAB的遗传算法(工具箱实现)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/3205.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深入理解浏览器的缓存机制之协商缓存与强缓存

目录 什么是浏览器缓存 浏览器缓存的分类 &#x1f397;️ 强缓存 &#x1f397;️ 协商缓存 &#x1f449;&#x1f3fb; 缓存请求流程 &#x1f449;&#x1f3fb; 为什么要有Etag &#x1f449;&#x1f3fb; 缓存优先级 &#x1f449;&#x1f3fb; 启发式缓存 &a…

DBeaver连接mysql时报错com.mysql.cj.jdbc.Driver的解决方法【修改驱动下载的maven地址和重新下载驱动】

文章目录 说明解决方法1、打开DBeaver点击窗口-->窗口-->首选项-->链接-->点击驱动-->Maven-->添加2、删除已有的驱动3、重新创建mysql链接 说明 网上下载了最新版本的DBeaver软件&#xff0c;但是链接mysql的时候驱动下载失败&#xff0c;所以就报下面错误…

【计算机视觉】DINO

paper&#xff1a;Emerging Properties in Self-Supervised Vision Transformers 源码&#xff1a;https://github.com/facebookresearch/dino 20230627周二目前只把第一部分看完了。 论文导读&#xff1a;DINO -自监督视觉Transformers - deephub的文章 - 知乎 综述类型&a…

LangChain:LLM应用程序开发(上)——Models、Prompt、Parsers、Memory、Chains

文章目录 一、Models、Prompt、Parsers1.1 环境配置&#xff08;导入openai&#xff09;1.2 辅助函数&#xff08;Chat API : OpenAI&#xff09;1.3 使用OpenAI API进行文本翻译1.4使用LangChain进行文本翻译1.5 使用LangChain解析LLM的JSON输出1.5.1 LangChain输出为string格…

16.RocketMQ之消费重试以及原理

highlight: arduino-light 1.4 消费重试 对于顺序消息,当消费者消费消息失败后,消费者会在本地自动不断进行消息重试,每次间隔时间为 1 秒,重试最大值是 Integer.MAX_VALUE。 对于无序消息(普通、定时、延时、事务消息)当消费者消费消息失败时可以通过设置返回状态达到重试的目…

面向初学者的卷积神经网络

卷积神经网络在机器学习中非常重要。如果你想做计算机视觉或图像识别任务&#xff0c;你根本离不开它们。但是很难理解它们是如何工作的。 在这篇文章中&#xff0c;我们将讨论卷积神经网络背后的机制、它的优点和应用领域。 什么是神经网络&#xff1f; 首先&#xff0c;让…

【Docker】什么是Docker,它用来干什么

作者简介&#xff1a; 辭七七&#xff0c;目前大一&#xff0c;正在学习C/C&#xff0c;Java&#xff0c;Python等 作者主页&#xff1a; 七七的个人主页 文章收录专栏&#xff1a; 七七的闲谈 欢迎大家点赞 &#x1f44d; 收藏 ⭐ 加关注哦&#xff01;&#x1f496;&#x1f…

网安等保 | 主机安全之KylinOS银河麒麟服务器配置优化与安全加固基线文档脚本分享...

欢迎关注「全栈工程师修炼指南」公众号 点击 &#x1f447; 下方卡片 即可关注我哟! 设为「星标⭐」每天带你 基础入门 到 进阶实践 再到 放弃学习&#xff01; “ 花开堪折直须折&#xff0c;莫待无花空折枝。 ” 作者主页&#xff1a;[ https://www.weiyigeek.top ] 博客&…

如何使用uni-app开发微信小程序

web前端-基于uniapp的微信小程序项目 起步uni-app简介开发工具下载 HBuilderX安装 HBuilderX安装 scss/sass 编译快捷键方案切换修改编辑器的基本设置新建uni-app项目把项目运行到微信开发者工具 scss语法学习安装相关插件和配置基础格式选择器的嵌套父选择器后面添加内容 &…

抽象轻松JavaScript

有人问&#xff0c;我如果有三个以上的目的那个我该怎么办 这里目前提供两种方案 第一种&#xff1a;判断语句的嵌套 第二种&#xff1a;判断语句的第四种形式 判断语句的第四种分支——switch&#xff08;&#xff09;判断语句 抽象形容&#xff1a;就像水库闸门一样&…

ChatGPT将改变教育,而不是摧毁它

01 学校和大学的反应迅速而果断 就在 OpenAI 于 2022 年 11月下旬发布ChatGPT 的几天后&#xff0c;该聊天机器人被广泛谴责为一种免费的论文写作、应试工具&#xff0c;它很容易在作业中作弊。 美国第二大学区洛杉矶联合大学立即阻止了OpenAI网站从其学校网络访问。其他人很…

SSMP整合案例(8) Restful开发表现层接口

之前几篇文章后面 我们的数据层 和 业务层基本就搭好了 然后 我们就要处理表现层 表现层开发 我们就还是用之前讲过的 Restful 然后 用Postman来做我们接口的测试 那话不多说 直接开干 在启动类同目录下创建一个 controller 包 下面创建一个类 叫 BookController BookControl…