3D目标检测(教程+代码)

随着计算机视觉技术的不断发展,3D目标检测成为了一个备受关注的研究领域。与传统的2D目标检测相比,3D目标检测可以在三维空间中对物体进行定位和识别,具有更高的准确性和适用性。本文将介绍3D目标检测的相关概念、方法和代码实现。

一、3D目标检测的基本概念
1. 3D目标检测是什么?

3D目标检测是指在三维场景中检测和识别物体的过程。与传统的2D目标检测相比,3D目标检测可以提供更加精确的物体位置和姿态信息,适用于许多实际应用,例如自动驾驶、机器人导航、增强现实等领域。

2. 3D目标检测的难点是什么?

3D目标检测的难点主要包括以下几个方面:

(1)数据获取困难:获取三维场景数据需要使用专门的传感器或摄像机,成本较高,数据集数量有限。

(2)数据处理复杂:三维场景数据需要进行点云处理、网格化等操作,对算法和计算资源要求较高。

(3)数据标注困难:标注三维物体需要进行立体标注,标注成本较高,标注人员需要专业知识和技能。

二、3D目标检测的常见方法
1. 基于深度学习的3D目标检测

深度学习是当前3D目标检测领域的主流方法。通常采用点云或三维网格作为输入数据,在经过卷积、池化等操作后,使用全连接层输出物体的类别、位置和姿态信息。常见的深度学习模型包括PointNet、VoxelNet、Frustum PointNet等。

2. 基于几何学的3D目标检测

基于几何学的3D目标检测方法通常基于传统的计算几何或机器视觉算法,例如支持向量机、随机森林等。这些方法通常使用手工设计的特征和规则来实现目标检测和识别功能。虽然这些方法在一些领域和场景下仍然具有优势,但在复杂场景下的推广和应用受到了限制。

三、3D目标检测的代码实现

下面将介绍一个基于深度学习的3D目标检测代码实现案例,使用的是PointNet++算法。

1. 环境搭建

本案例使用Python语言和PyTorch深度学习框架,需要安装numpy、h5py、scipy、tqdm等库。同时,需要安装CUDA和cuDNN等支持GPU加速的工具。

2. 数据预处理

本案例使用KITTI数据集进行实验,需要对原始数据进行预处理,包括点云转换、数据划分、标注等操作。具体操作可参考官方文档或相关教程。

3. 模型训练

本案例使用PointNet++算法进行模型训练,代码实现可参考GitHub上的开源代码。在训练过程中需要设置网络结构、损失函数、优化器等参数,并使用训练集和验证集进行训练和测试。训练过程需要耗费较长时间,需要充分利用GPU加速和分布式训练等技术。

4. 模型评估

在模型训练完成后,需要对其进行评估和测试。本案例使用验证集和测试集进行评估,计算准确率、召回率、F1值等指标,并可使用混淆矩阵和ROC曲线进行可视化分析。

四、总结

本文介绍了3D目标检测的基本概念、常见方法和代码实现。随着计算机视觉技术的不断发展,3D目标检测在自动驾驶、机器人导航、增强现实等领域具有广泛的应用前景。未来的研究将致力于进一步提高算法的性能和效率,以满足实际应用的需求。

概述

3d Objectron是一种适用于日常物品的移动实时3D物体检测解决方案。它可以检测2D图像中的物体,并通过在Objectron数据集上训练的机器学习(ML)模型估计它们的姿态.
下图为模型训练后推理的结果!

算法

我们建立了两个机器学习管道来从单个RGB图像预测物体的3D边界框:一个是两阶段管道,另一个是单阶段管道。两阶段管道比单阶段管道快3倍,准确率相似或更好。单阶段管道擅长检测多个物体,而两阶段管道适用于单个主导物体。
单价段训练模型:

我们的单级流技术路线图,如图所示,模型骨干具有基于MobileNetv2的编码器-解码器架构。我们采用多任务学习方法,同时预测物体的形状、检测和回归。形状任务根据可用的真实注释,例如分割,预测物体的形状信号。如果在训练数据中没有形状注释,则此步骤是可选的。对于检测任务,我们使用注释的边界框并适合高斯到盒子,其中心在盒子重心处,标准偏差与盒子大小成比例。检测的目标是预测具有峰值表示物体中心位置的此分布。回归任务估计八个边界框顶点的二维投影。为了获得边界框的最终3D坐标,我们利用了一个成熟的姿态估计算法(EPnP)。它可以恢复物体的3D边界框,而不需要先验知识。给定3D边界框,我们可以轻松地计算物体的姿态和大小。该模型足够轻,可以在移动设备上实时运行(在Adreno 650移动GPU上以26 FPS的速度运行)。

主要代码和结果
结果:
 

获取现实世界的3D训练数据
尽管由于自动驾驶汽车依赖于3D捕捉传感器(如LIDAR)的研究的流行,有大量的街景3D数据可用,但是对于更精细的日常物品的具有真实3D标注的数据集非常有限。为了解决这个问题,我们开发了一种新颖的数据管道,利用移动增强现实(AR)会话数据。随着ARCore和ARKit的到来,数亿部智能手机现在具有AR功能,并且能够在AR会话期间捕获附加信息,包括相机姿态、稀疏3D点云、估计的照明和平面表面。
为了标注地面真实数据,我们构建了一个新颖的注释工具,可用于AR会话数据,允许注释者快速为物体标注3D边界框。此工具使用分屏视图,在左侧显示覆盖了3D边界框的2D视频帧,以及在右侧显示3D点云、相机位置和检测到的平面的视图。注释者在3D视图中绘制3D边界框,并通过检查2D视频帧的投影来验证其位置。对于静态对象,我们只需要在一个帧中标注一个对象,并使用AR会话数据的地面真实相机姿态信息将其传播到所有帧,这使得该过程高效。

主要代码:
 

with mp_objectron.Objectron(static_image_mode=True,max_num_objects=5,min_detection_confidence=0.5,model_name='Shoe') as objectron:for idx, file in enumerate(IMAGE_FILES):image = cv2.imread(file)
##全部代码请联系---------->qq1309399183<-----------------------# Convert the BGR image to RGB and process it with MediaPipe Objectron.results = objectron.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))if not results.detected_objects:print(f'No box landmarks detected on {file}')continueprint(f'Box landmarks of {file}:')annotated_image = image.copy()for detected_object in results.detected_objects:mp_drawing.draw_landmarks(annotated_image, detected_object.landmarks_2d, mp_objectron.BOX_CONNECTIONS)mp_drawing.draw_axis(annotated_image, detected_object.rotation,detected_object.translation)cv2.imwrite('/tmp/annotated_image' + str(idx) + '.png', annotated_image)QQ767172261

全部代码可交流私信

主要讲解:主要调用库函数,然后可以对视频流或者读取电脑摄像头,真正做到方便实用,高效快捷,实时显示结果 实施输出模型,可以毕业设计用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/321242.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python-1-字符串类型及方法

众所周知&#xff0c;Python面向对象&#xff0c;功能强大 | ू•ૅω•́)ᵎᵎᵎ

某和医院招采系统web端数据爬取, 逆向js

目标网址:https://zbcg.sznsyy.cn/homeNotice 测试时间: 2024-01-03 1 老规矩,打开Chrome无痕浏览,打开链接,监测网络,通过刷新以及上下翻页可以猜测出数据的请求是通过接口frontPageAnnouncementList获取的,查看返回可以看出来数据大概率是经过aes加密的,如图: 通过查看该请…

FLatten Transformer:聚焦式线性注意力模块

线性注意力将Softmax解耦为两个独立的函数&#xff0c;从而能够将注意力的计算顺序从(querykey)value调整为query(keyvalue)&#xff0c;使得总体的计算复杂度降低为线性。然而&#xff0c;目前的线性注意力方法要么性能明显不如Softmax注意力&#xff0c;并且可能涉及映射函数…

搜维尔科技:【简报】第九届元宇宙数字人设计大赛,报名已经进入白热化阶段!

随着元宇宙时代的来临&#xff0c;数字人设计成为了创新前沿领域之一。为了提高大学生元宇宙虚拟人角色策划与美术设计的专业核心能力&#xff0c;我们特别举办了这场元宇宙数字人设计赛道&#xff0c;赛道主题为「AI人工智能科技」 &#xff0c;只要与「AI人工智能科技」相关的…

SpringBoot项目处理 多数据源问题(把本地库数据 推送 到另外一个平台的库)

一、需求梳理 把我方数据库的表中数据 ----------> 推送到第三方的数据库 相当于库对库的数据插入, 但是需要的是用代码的方式实现; 二、解决思维 (1) 首先,平台与平台之间的数据库对接; 处理点1: 字段转换 (库表之间的数据字段不一致问题) 解决方式: 挨个字段的对应,如…

es索引数据过滤查询

1.我们往kibana插入数据,来进行查询 POST /t1/_doc/ {"name":"cat","age":"18","address":"BJ","job":"dev" } POST /t1/_doc/ {"name":"dog","age":"1…

雍禾医疗亮相博鳌论坛 雍禾植发让小城市也能治“毛”病

颜值经济时代&#xff0c;伴随着居民消费水平的提高与受脱发困扰群体的逐步扩张&#xff0c;人们对毛发健康与毛发美观的关注度日益增长。需求催生了毛发医疗行业的飞速发展&#xff0c;为脱发群体提供爱美、求美、变美的新思路、新契机。 近期&#xff0c;2023中国企业家博鳌…

第一部分:vue学习(26-x)

文章目录 26.绑定class样式27 绑定style内联样式28 条件渲染29 列表渲染 26.绑定class样式 案例1&#xff1a;点击切换class样式。其中noarmal happy都是css定义好的样式。 案例2&#xff1a;切换随机的样式。 案例3&#xff1a;css样式&#xff0c;列表生效 案例4&#xff1…

CUDA动态并行

一、简介 1. 综述 动态并行是 CUDA 编程模型的扩展&#xff0c;使 CUDA 内核能够直接在 GPU 上创建新工作并与其同步。 在程序中任何需要的地方动态创建并行性都提供了令人兴奋的功能。 直接从 GPU 创建工作的能力可以减少在主机和设备之间传输执行控制和数据的需要&#xf…

顶帽运算在OpenCv中的应用

项目背景 假如我们拍了一张自拍&#xff0c;想为自己的照片添加一个酷炫的火星飞舞的效果&#xff0c;素材库中正好有一张火焰的照片&#xff0c;如果想去除图中的火焰&#xff0c;只保留火星效果&#xff0c;可以使用顶帽子算法 图片中的火星部分正好属于比周围亮一些的斑块…

C++第四天

定义一个Person类&#xff0c;私有成员int age&#xff0c;string &name&#xff0c;定义一个Stu类&#xff0c;包含私有成员double *score&#xff0c;写出两个类的构造函数、析构函数、拷贝构造和拷贝赋值函数&#xff0c;完成对Person的运算符重载(算术运算符、条件运算…

算法训练day02Leetcode977有序数组平方209长度最小的字数组59螺旋问题

今日学习的文章链接和视频链接 https://www.bilibili.com/video/BV1QB4y1D7ep/?vd_source8272bd48fee17396a4a1746c256ab0ae https://www.bilibili.com/video/BV1tZ4y1q7XE/?vd_source8272bd48fee17396a4a1746c256ab0ae https://programmercarl.com/0059.%E8%9E%BA%E6%97%…