李沐机器学习系列4---全连接层到卷积

1 从全连接到卷积

在这里插入图片描述

1.1 平移不变性

在这里插入图片描述
从概率分布的角度来看卷积的定义, f ( τ ) f(\tau) f(τ)是概率密度, g ( t − τ ) g(t-\tau) g(tτ)是在这个分布下的均值
( f ∗ g ) ( t ) = ∫ − ∞ ∞ f ( τ ) g ( t − τ ) d τ (f*g)(t)=\int_{-\infin}^{\infin}f(\tau)g(t-\tau)d\tau (fg)(t)=f(τ)g(tτ)dτ

在这里插入图片描述

2 图像卷积

2.1 互相关运算

在这里插入图片描述

import torch
from torch import nn
from d2l import torch as d2ldef corr2d(X, K):  #@save"""计算二维互相关运算"""h, w = K.shapeY = torch.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1))for i in range(Y.shape[0]):for j in range(Y.shape[1]):Y[i, j] = (X[i:i + h, j:j + w] * K).sum()return Y

2.2 特征影射和感受野

特征映射(feature map),因为它可以被视为一个输入映射到下一层的空间维度的转换器。 在卷积神经网络中,对于某一层的任意元素,其感受野(receptive field)是指在前向传播期间可能影响计算的所有元素(来自所有先前层)。

3 填充

边界进行0填充,主要是autograd如何解决,前向比较容易实现

import torch
from torch import nn# 为了方便起见,我们定义了一个计算卷积层的函数。
# 此函数初始化卷积层权重,并对输入和输出提高和缩减相应的维数
def comp_conv2d(conv2d, X):# 这里的(1,1)表示批量大小和通道数都是1X = X.reshape((1, 1) + X.shape)Y = conv2d(X)# 省略前两个维度:批量大小和通道return Y.reshape(Y.shape[2:])# 请注意,这里每边都填充了1行或1列,因此总共添加了2行或2列
conv2d = nn.Conv2d(1, 1, kernel_size=3, padding=1)
X = torch.rand(size=(8, 8))
comp_conv2d(conv2d, X).shape

在这里插入图片描述
在这里插入图片描述

4 多输入多输出通道

4.1 多输入通道

输入通道数量c_i对应核的维度
在这里插入图片描述

4.2 多输出通道

在这里插入图片描述

4.3 1*1卷积层

改变输入的通道数量,但是保持相同的高度和宽度
在这里插入图片描述

5 汇聚层

最后一层的神经元应该对整个输入的全局敏感。通过逐渐聚合信息,生成越来越粗糙的映射,最终实现学习全局表示的目标,同时将卷积图层的所有优势保留在中间层
汇聚层的两个作用:

  • 降低卷积层对位置的敏感性
  • 降低对空间降采样表示的敏感性

5.1 最大汇聚层和平均汇聚层

在这里插入图片描述

5.2 多个通道

多个通道对每个通道进行单独计算,不会进行汇总。
在这里插入图片描述

net = nn.Sequential(nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.Sigmoid(),nn.AvgPool2d(kernel_size=2, stride=2),nn.Conv2d(6, 16, kernel_size=5), nn.Sigmoid(),nn.AvgPool2d(kernel_size=2, stride=2),nn.Flatten(),nn.Linear(16 * 5 * 5, 120), nn.Sigmoid(),nn.Linear(120, 84), nn.Sigmoid(),nn.Linear(84, 10))

6 AlexNet

6.1 早期的图像发展历程

在这里插入图片描述
通过神经网络学习特征
在这里插入图片描述
突破的关键要素:
1)数据
2)硬件

AlexNet

在这里插入图片描述
改进方法:
1)网络维度更大,参数接近1G
2)激活函数,更换成Relu
3) 容量控制和预处理
使用图像增强,翻转,裁切,和变色

8 VGG

出现了代码块,将一些可以复用的网络结构进行封装

import torch
from torch import nn
from d2l import torch as d2ldef vgg_block(num_convs, in_channels, out_channels):layers = []for _ in range(num_convs):layers.append(nn.Conv2d(in_channels, out_channels,kernel_size=3, padding=1))layers.append(nn.ReLU())in_channels = out_channelslayers.append(nn.MaxPool2d(kernel_size=2,stride=2))return nn.Sequential(*layers)

也可以使用pytorch的自定义块功能

import torch
from torch import nnclass VGGBlock(nn.Module):def __init__(self, num_convs, in_channels, out_channels):super(VGGBlock, self).__init__()layers = []for _ in range(num_convs):layers.append(nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1))layers.append(nn.ReLU())in_channels = out_channelslayers.append(nn.MaxPool2d(kernel_size=2, stride=2))self.vgg_block = nn.Sequential(*layers)def forward(self, x):return self.vgg_block(x)

在这里插入图片描述

9 NiN块

核心的思想:
1)取消了全连接层,最后用一个全局平均汇聚层,生成对数几率
2)使用串联网络

import torch
from torch import nn
from d2l import torch as d2ldef nin_block(in_channels, out_channels, kernel_size, strides, padding):return nn.Sequential(nn.Conv2d(in_channels, out_channels, kernel_size, strides, padding),nn.ReLU(),nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.ReLU(),nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.ReLU())
net = nn.Sequential(nin_block(1, 96, kernel_size=11, strides=4, padding=0),nn.MaxPool2d(3, stride=2),nin_block(96, 256, kernel_size=5, strides=1, padding=2),nn.MaxPool2d(3, stride=2),nin_block(256, 384, kernel_size=3, strides=1, padding=1),nn.MaxPool2d(3, stride=2),nn.Dropout(0.5),# 标签类别数是10nin_block(384, 10, kernel_size=3, strides=1, padding=1),nn.AdaptiveAvgPool2d((1, 1)),# 将四维的输出转成二维的输出,其形状为(批量大小,10)nn.Flatten())

在这里插入图片描述

10 GoogleNet

核心思想:
1)使用不同大小的卷积核组合是有利的

import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2lclass Inception(nn.Module):# c1--c4是每条路径的输出通道数def __init__(self, in_channels, c1, c2, c3, c4, **kwargs):super(Inception, self).__init__(**kwargs)# 线路1,单1x1卷积层self.p1_1 = nn.Conv2d(in_channels, c1, kernel_size=1)# 线路2,1x1卷积层后接3x3卷积层self.p2_1 = nn.Conv2d(in_channels, c2[0], kernel_size=1)self.p2_2 = nn.Conv2d(c2[0], c2[1], kernel_size=3, padding=1)# 线路3,1x1卷积层后接5x5卷积层self.p3_1 = nn.Conv2d(in_channels, c3[0], kernel_size=1)self.p3_2 = nn.Conv2d(c3[0], c3[1], kernel_size=5, padding=2)# 线路4,3x3最大汇聚层后接1x1卷积层self.p4_1 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)self.p4_2 = nn.Conv2d(in_channels, c4, kernel_size=1)def forward(self, x):p1 = F.relu(self.p1_1(x))p2 = F.relu(self.p2_2(F.relu(self.p2_1(x))))p3 = F.relu(self.p3_2(F.relu(self.p3_1(x))))p4 = F.relu(self.p4_2(self.p4_1(x)))# 在通道维度上连结输出return torch.cat((p1, p2, p3, p4), dim=1)

在这里插入图片描述
在这里插入图片描述

11 批量规范化

训练网络的一些关键挑战:
1)标准化输入特征
2)中间变量,这些变量分布中的这种偏移可能会阻碍网络的收敛,
3)更深层的网络很复杂,容易过拟合。 这意味着正则化变得更加重要
在这里插入图片描述

11.1 批量规范化应用在全连接层

在这里插入图片描述

import torch
from torch import nn
from d2l import torch as d2ldef batch_norm(X, gamma, beta, moving_mean, moving_var, eps, momentum):# 通过is_grad_enabled来判断当前模式是训练模式还是预测模式if not torch.is_grad_enabled():# 如果是在预测模式下,直接使用传入的移动平均所得的均值和方差X_hat = (X - moving_mean) / torch.sqrt(moving_var + eps)else:assert len(X.shape) in (2, 4)if len(X.shape) == 2:# 使用全连接层的情况,计算特征维上的均值和方差mean = X.mean(dim=0)var = ((X - mean) ** 2).mean(dim=0)else:# 使用二维卷积层的情况,计算通道维上(axis=1)的均值和方差。# 这里我们需要保持X的形状以便后面可以做广播运算mean = X.mean(dim=(0, 2, 3), keepdim=True)var = ((X - mean) ** 2).mean(dim=(0, 2, 3), keepdim=True)# 训练模式下,用当前的均值和方差做标准化X_hat = (X - mean) / torch.sqrt(var + eps)# 更新移动平均的均值和方差moving_mean = momentum * moving_mean + (1.0 - momentum) * meanmoving_var = momentum * moving_var + (1.0 - momentum) * varY = gamma * X_hat + beta  # 缩放和移位return Y, moving_mean.data, moving_var.data

定义一个BatchNOorm, 因为batchNorm中的gamma和beta这两个参数是需要再训练中进行更新的,

net = nn.Sequential(nn.Conv2d(1, 6, kernel_size=5), BatchNorm(6, num_dims=4), nn.Sigmoid(),nn.AvgPool2d(kernel_size=2, stride=2),nn.Conv2d(6, 16, kernel_size=5), BatchNorm(16, num_dims=4), nn.Sigmoid(),nn.AvgPool2d(kernel_size=2, stride=2), nn.Flatten(),nn.Linear(16*4*4, 120), BatchNorm(120, num_dims=2), nn.Sigmoid(),nn.Linear(120, 84), BatchNorm(84, num_dims=2), nn.Sigmoid(),nn.Linear(84, 10))

标准的batchNorm的实现

net = nn.Sequential(nn.Conv2d(1, 6, kernel_size=5), nn.BatchNorm2d(6), nn.Sigmoid(),nn.AvgPool2d(kernel_size=2, stride=2),nn.Conv2d(6, 16, kernel_size=5), nn.BatchNorm2d(16), nn.Sigmoid(),nn.AvgPool2d(kernel_size=2, stride=2), nn.Flatten(),nn.Linear(256, 120), nn.BatchNorm1d(120), nn.Sigmoid(),nn.Linear(120, 84), nn.BatchNorm1d(84), nn.Sigmoid(),nn.Linear(84, 10))

12 Resnet

使用嵌套函数来理解Resnet的作用,每个附加层都应该更容易地包含原始函数作为其元素之一
在这里插入图片描述
在这里插入图片描述

import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2lclass Residual(nn.Module):  #@savedef __init__(self, input_channels, num_channels,use_1x1conv=False, strides=1):super().__init__()self.conv1 = nn.Conv2d(input_channels, num_channels,kernel_size=3, padding=1, stride=strides)self.conv2 = nn.Conv2d(num_channels, num_channels,kernel_size=3, padding=1)if use_1x1conv:self.conv3 = nn.Conv2d(input_channels, num_channels,kernel_size=1, stride=strides)else:self.conv3 = Noneself.bn1 = nn.BatchNorm2d(num_channels)self.bn2 = nn.BatchNorm2d(num_channels)def forward(self, X):Y = F.relu(self.bn1(self.conv1(X)))Y = self.bn2(self.conv2(Y))if self.conv3:X = self.conv3(X)Y += Xreturn F.relu(Y)

在这里插入图片描述

b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),nn.BatchNorm2d(64), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2, padding=1))def resnet_block(input_channels, num_channels, num_residuals,first_block=False):blk = []for i in range(num_residuals):if i == 0 and not first_block:blk.append(Residual(input_channels, num_channels,use_1x1conv=True, strides=2))else:blk.append(Residual(num_channels, num_channels))return blkb2 = nn.Sequential(*resnet_block(64, 64, 2, first_block=True))
b3 = nn.Sequential(*resnet_block(64, 128, 2))
b4 = nn.Sequential(*resnet_block(128, 256, 2))
b5 = nn.Sequential(*resnet_block(256, 512, 2))net = nn.Sequential(b1, b2, b3, b4, b5,nn.AdaptiveAvgPool2d((1,1)),nn.Flatten(), nn.Linear(512, 10))X = torch.rand(size=(1, 1, 224, 224))
for layer in net:X = layer(X)print(layer.__class__.__name__,'output shape:\t', X.shape)lr, num_epochs, batch_size = 0.05, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

在这里插入图片描述

12 DenseNet

思路来源于函数的泰勒展开,
在这里插入图片描述

在这里插入图片描述

import torch
from torch import nn
from d2l import torch as d2ldef conv_block(input_channels, num_channels):return nn.Sequential(nn.BatchNorm2d(input_channels), nn.ReLU(),nn.Conv2d(input_channels, num_channels, kernel_size=3, padding=1))class DenseBlock(nn.Module):def __init__(self, num_convs, input_channels, num_channels):super(DenseBlock, self).__init__()layer = []for i in range(num_convs):layer.append(conv_block(num_channels * i + input_channels, num_channels))self.net = nn.Sequential(*layer)def forward(self, X):for blk in self.net:Y = blk(X)# 连接通道维度上每个块的输入和输出X = torch.cat((X, Y), dim=1)return X
blk = DenseBlock(2, 3, 10)
X = torch.randn(4, 3, 8, 8)
Y = blk(X)
Y.shapedef transition_block(input_channels, num_channels):return nn.Sequential(nn.BatchNorm2d(input_channels), nn.ReLU(),nn.Conv2d(input_channels, num_channels, kernel_size=1),nn.AvgPool2d(kernel_size=2, stride=2))

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/322017.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vue-打包

打包的作用 说明:vue脚手架只是开发过程中,协助开发的工具,当真正开发完了>脚手架不参与上线 打包的作用: 1)将多个文件压缩合并成一个文件 2)语法降级 3)less sass ts语法解析 打包后…

大创项目推荐 深度学习卫星遥感图像检测与识别 -opencv python 目标检测

文章目录 0 前言1 课题背景2 实现效果3 Yolov5算法4 数据处理和训练5 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 **深度学习卫星遥感图像检测与识别 ** 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐…

Linux_CentOS_7.9配置时区及NTPdate同步之简易记录

前言:ntpdate命令来自英文词组”NTPdate“的拼写,其功能是用于设置日期和时间。ntpdate命令能够基于NTP协议设置Linux系统的本地日期和时间,利用NTP服务的时钟过滤器来选择最优方案,大大提高了可靠性和精度,让系统时间…

pandas.DataFrame() 数据自动写入Excel

DataFrame 表格数据格式 ; to_excel 写入Excel数据; read_excel 阅读 Excel数据函数 import pandas as pd#df2 pd.DataFrame({neme: [zhangsan, lisi, 3]}) df1 pd.DataFrame({One: [1, 2, 3],name: [zhangsan, lisi, 3]})#One是列明,123是…

【LeetCode】150. 逆波兰表达式求值(ASCII码)

今日学习的文章链接和视频链接 leetcode题目地址:150. 逆波兰表达式求值 代码随想录题解地址:代码随想录 题目简介 即将后缀表达式转换成中缀表达式并计算。 给你一个字符串数组 tokens ,表示一个根据 逆波兰表示法 表示的算术表达式。 …

Linux系统使用超详细(六)~进程管理

目录 一、认识进程 二、进程号 2.1.进程号概念 2.2.进程号作用 三、进程查看 3.1. ps命令: 3.2. top命令: 3.3. htop命令: 3.4. pstree命令: 3.5. pgrep命令: 四、进程状态 五、进程优先级 六、进程优先…

HarmonyOS 应用开发学习笔记 ets自定义组件及其引用 @Component自定义组件

Component注解的作用是用来构建自定义组件 Component组件官方文档 自定义组件具有以下特点: 可组合:允许开发者组合使用系统组件、及其属性和方法。 可重用:自定义组件可以被其他组件重用,并作为不同的实例在不同的父组件或容器…

rime中州韵小狼毫 help lua Translator 帮助消息翻译器

lua 是 Rime中州韵/小狼毫输入法强大的武器,掌握如何在Rime中州韵/小狼毫中使用lua,你将体验到什么叫 随心所欲。 先看效果 在 rime中州韵 输入效果一览 中的 👇 help效果 一节中, 我们看到了在Rime中州韵/小狼毫输入法中输入 h…

Dockerfile语法和简单镜像构建

Dockerfile是一个用于定义Docker镜像的文本文件,包含了一系列的指令和参数,用于指示Docker在构建镜像时应该执行哪些操作,例如基于哪个基础镜像、复制哪些文件到镜像中、运行哪些命令等。 Dockerfile文件的内容主要有几个部分组成&#xff0c…

数据结构与算法(九)图链式存储

邻接表 度:无向图的度:顶点与邻接点连接的边就做度。有向图的度:指向顶点的边叫做入度,由顶点指向其他邻接点的边叫做出度 顶点:存储自身顶点信息和指向下一个临界点的指针 邻接点:保存临接点的存储下标…

杨中科 ASP.NET MVC

ASP.NET Core 入门 什么是ASP.NET CORE 1、ASP.NET Core是.NET中做Web开发的框架 2、ASP.NET Core MVC 传统MVC项目,前后端都做在一起 3、ASP.NET Core Web API: 前后端分离、多端开发。(是属于MVC中的一部分) 4、ASPNET Core MVC其实包含Web API,不过…

RA4803SA (高稳定实时时钟模块)

汽车用RA4803SA,高稳定串行接口实时时钟模块内置频率可调32.768kHz晶体单元和DTCXO。1/100秒分辨率时间寄存器接口类型4线串行接口界面电压范围1.6V ~ 5.5V温度补偿电压范围2.2V至5.5V时钟电源电压范围1.6V ~ 5.5V可选时钟输出(32.768kHz, 1024Hz, 1Hz)各种功能包括…