大创项目推荐 深度学习卫星遥感图像检测与识别 -opencv python 目标检测

文章目录

  • 0 前言
  • 1 课题背景
  • 2 实现效果
  • 3 Yolov5算法
  • 4 数据处理和训练
  • 5 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **深度学习卫星遥感图像检测与识别 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:5分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

在这里插入图片描述

1 课题背景

近年来,世界各国大力发展航空航天事业,卫星图像的目标检测在各行各业的应用得到了快速的发展,特别是军事侦查、海洋船舶和渔业管理等领域。由于卫星图像中有价值的信息极少,卫星图像数据规模巨大,这迫切需要智能辅助工具帮助相关从业人员从卫星图像中高效获取精确直观的信息。
本文利用深度学习技术,基于Yolov5算法框架实现卫星图像目标检测问题。

2 实现效果

实现效果如下:可以看出对船只、飞机等识别效果还是很好的。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3 Yolov5算法

简介
下图所示为 YOLOv5 的网络结构图,分为输入端,Backbone,Neck 和 Prediction 四个部分。其中,
输入端包括 Mosaic 数据增强、自适应图片缩放、自适应锚框计算,Backbone 包括 Focus 结构、CSP
结 构,Neck 包 括 FPN+PAN 结 构,Prediction 包 括GIOU_Loss 结构。
在这里插入图片描述
相关代码

class Yolo(object):def __init__(self, weights_file, verbose=True):self.verbose = verbose# detection paramsself.S = 7  # cell sizeself.B = 2  # boxes_per_cellself.classes = ["aeroplane", "bicycle", "bird", "boat", "bottle","bus", "car", "cat", "chair", "cow", "diningtable","dog", "horse", "motorbike", "person", "pottedplant","sheep", "sofa", "train","tvmonitor"]self.C = len(self.classes) # number of classes# offset for box center (top left point of each cell)self.x_offset = np.transpose(np.reshape(np.array([np.arange(self.S)]*self.S*self.B),[self.B, self.S, self.S]), [1, 2, 0])self.y_offset = np.transpose(self.x_offset, [1, 0, 2])self.threshold = 0.2  # confidence scores threholdself.iou_threshold = 0.4#  the maximum number of boxes to be selected by non max suppressionself.max_output_size = 10self.sess = tf.Session()self._build_net()self._build_detector()self._load_weights(weights_file)

4 数据处理和训练

数据集
本项目使用 DOTA 数据集,原数据集中待检测的目标如下
在这里插入图片描述
原数据集中的标签如下
在这里插入图片描述
图像分割和尺寸调整
YOLO 模型的图像输入尺寸是固定的,由于原数据集中的图像尺寸不一,我们将原数据集中的图像按目标分布的位置分割成一个个包含目标的子图,并将每个子图尺寸调整为
1024×1024。分割前后的图像如所示。
分割前
在这里插入图片描述
分割后
在这里插入图片描述
模型训练
在 yolov5/ 目录,运行 train.py 文件开始训练:

python train.py --weight weights/yolov5s.pt --batch 16 --epochs 100 --cache

其中的参数说明:

  • weight:使用的预训练权重,这里示范使用的是 yolov5s 模型的预训练权重
  • batch:mini-batch 的大小,这里使用 16
  • epochs:训练的迭代次数,这里我们训练 100 个 epoch
  • cache:使用数据缓存,加速训练进程

相关代码

#部分代码
def train(hyp, opt, device, tb_writer=None):logger.info(f'Hyperparameters {hyp}')log_dir = Path(tb_writer.log_dir) if tb_writer else Path(opt.logdir) / 'evolve'  # logging directorywdir = log_dir / 'weights'  # weights directoryos.makedirs(wdir, exist_ok=True)last = wdir / 'last.pt'best = wdir / 'best.pt'results_file = str(log_dir / 'results.txt')epochs, batch_size, total_batch_size, weights, rank = \opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank# Save run settingswith open(log_dir / 'hyp.yaml', 'w') as f:yaml.dump(hyp, f, sort_keys=False)with open(log_dir / 'opt.yaml', 'w') as f:yaml.dump(vars(opt), f, sort_keys=False)# Configurecuda = device.type != 'cpu'init_seeds(2 + rank)with open(opt.data) as f:data_dict = yaml.load(f, Loader=yaml.FullLoader)  # data dictwith torch_distributed_zero_first(rank):check_dataset(data_dict)  # checktrain_path = data_dict['train']test_path = data_dict['val']nc, names = (1, ['item']) if opt.single_cls else (int(data_dict['nc']), data_dict['names'])  # number classes, namesassert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data)  # check# Modelpretrained = weights.endswith('.pt')if pretrained:with torch_distributed_zero_first(rank):attempt_download(weights)  # download if not found locallyckpt = torch.load(weights, map_location=device)  # load checkpointif 'anchors' in hyp and hyp['anchors']:ckpt['model'].yaml['anchors'] = round(hyp['anchors'])  # force autoanchormodel = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc).to(device)  # createexclude = ['anchor'] if opt.cfg else []  # exclude keysstate_dict = ckpt['model'].float().state_dict()  # to FP32state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude)  # intersectmodel.load_state_dict(state_dict, strict=False)  # loadlogger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights))  # reportelse:model = Model(opt.cfg, ch=3, nc=nc).to(device)  # create# Freezefreeze = ['', ]  # parameter names to freeze (full or partial)if any(freeze):for k, v in model.named_parameters():if any(x in k for x in freeze):print('freezing %s' % k)v.requires_grad = False# Optimizernbs = 64  # nominal batch sizeaccumulate = max(round(nbs / total_batch_size), 1)  # accumulate loss before optimizinghyp['weight_decay'] *= total_batch_size * accumulate / nbs  # scale weight_decaypg0, pg1, pg2 = [], [], []  # optimizer parameter groupsfor k, v in model.named_parameters():v.requires_grad = Trueif '.bias' in k:pg2.append(v)  # biaseselif '.weight' in k and '.bn' not in k:pg1.append(v)  # apply weight decayelse:pg0.append(v)  # all else

训练开始时的日志信息
在这里插入图片描述
在这里插入图片描述

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/322015.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux_CentOS_7.9配置时区及NTPdate同步之简易记录

前言:ntpdate命令来自英文词组”NTPdate“的拼写,其功能是用于设置日期和时间。ntpdate命令能够基于NTP协议设置Linux系统的本地日期和时间,利用NTP服务的时钟过滤器来选择最优方案,大大提高了可靠性和精度,让系统时间…

pandas.DataFrame() 数据自动写入Excel

DataFrame 表格数据格式 ; to_excel 写入Excel数据; read_excel 阅读 Excel数据函数 import pandas as pd#df2 pd.DataFrame({neme: [zhangsan, lisi, 3]}) df1 pd.DataFrame({One: [1, 2, 3],name: [zhangsan, lisi, 3]})#One是列明,123是…

【LeetCode】150. 逆波兰表达式求值(ASCII码)

今日学习的文章链接和视频链接 leetcode题目地址:150. 逆波兰表达式求值 代码随想录题解地址:代码随想录 题目简介 即将后缀表达式转换成中缀表达式并计算。 给你一个字符串数组 tokens ,表示一个根据 逆波兰表示法 表示的算术表达式。 …

Linux系统使用超详细(六)~进程管理

目录 一、认识进程 二、进程号 2.1.进程号概念 2.2.进程号作用 三、进程查看 3.1. ps命令: 3.2. top命令: 3.3. htop命令: 3.4. pstree命令: 3.5. pgrep命令: 四、进程状态 五、进程优先级 六、进程优先…

HarmonyOS 应用开发学习笔记 ets自定义组件及其引用 @Component自定义组件

Component注解的作用是用来构建自定义组件 Component组件官方文档 自定义组件具有以下特点: 可组合:允许开发者组合使用系统组件、及其属性和方法。 可重用:自定义组件可以被其他组件重用,并作为不同的实例在不同的父组件或容器…

rime中州韵小狼毫 help lua Translator 帮助消息翻译器

lua 是 Rime中州韵/小狼毫输入法强大的武器,掌握如何在Rime中州韵/小狼毫中使用lua,你将体验到什么叫 随心所欲。 先看效果 在 rime中州韵 输入效果一览 中的 👇 help效果 一节中, 我们看到了在Rime中州韵/小狼毫输入法中输入 h…

Dockerfile语法和简单镜像构建

Dockerfile是一个用于定义Docker镜像的文本文件,包含了一系列的指令和参数,用于指示Docker在构建镜像时应该执行哪些操作,例如基于哪个基础镜像、复制哪些文件到镜像中、运行哪些命令等。 Dockerfile文件的内容主要有几个部分组成&#xff0c…

数据结构与算法(九)图链式存储

邻接表 度:无向图的度:顶点与邻接点连接的边就做度。有向图的度:指向顶点的边叫做入度,由顶点指向其他邻接点的边叫做出度 顶点:存储自身顶点信息和指向下一个临界点的指针 邻接点:保存临接点的存储下标…

杨中科 ASP.NET MVC

ASP.NET Core 入门 什么是ASP.NET CORE 1、ASP.NET Core是.NET中做Web开发的框架 2、ASP.NET Core MVC 传统MVC项目,前后端都做在一起 3、ASP.NET Core Web API: 前后端分离、多端开发。(是属于MVC中的一部分) 4、ASPNET Core MVC其实包含Web API,不过…

RA4803SA (高稳定实时时钟模块)

汽车用RA4803SA,高稳定串行接口实时时钟模块内置频率可调32.768kHz晶体单元和DTCXO。1/100秒分辨率时间寄存器接口类型4线串行接口界面电压范围1.6V ~ 5.5V温度补偿电压范围2.2V至5.5V时钟电源电压范围1.6V ~ 5.5V可选时钟输出(32.768kHz, 1024Hz, 1Hz)各种功能包括…

了解一下InternLM1

InternLM 是在过万亿 token 数据上训练的多语千亿参数基座模型。通过多阶段的渐进式训练,InternLM 基座模型具有较高的知识水平,在中英文阅读理解、推理任务等需要较强思维能力的场景下性能优秀,在多种面向人类设计的综合性考试中表现突出。在…

PyTorch数据并行(DP/DDP)浅析

一直以来都是用的单机单卡训练模型,虽然很多情况下已经足够了,但总有一些情况得上分布式训练: 模型大到一张卡放不下;单张卡batch size不敢设太大,训练速度慢;当你有好几张卡,不想浪费&#xf…