【数据结构】平衡二叉树

导语

对于二叉搜索树 而言,它的 增、 删 、 改 、 查  的时间复杂度为 O(\log_{2}n) ~ O(n) 。原因是最坏情况下,二叉搜索树会退化成 线性表  。换言之,树的高度决定了它插入、删除和查找的时间复杂度
为了对上述缺点进一步优化,设计了一种高度始终能够接近 O(\log_{2}n) 的 树形  的数据结构,它既有链表的快速插入与删除的特点,又有顺序表快速查找的优势。它就是:平衡二叉树 。


 一、平衡二叉树基本概念

1、平衡二叉树的定义

平衡二叉树(AVL树),是一种平衡(balanced)二叉搜索树(binary search tree, 简称为BST)。由两位科学家在1962年发表的论文《An algorithm for the organization of information》当中提出,作者是发明者G.M. Adelson-Velsky和E.M. Landis。它具有以下两个性质:

  • 空树是平衡二叉树
  • 任意一个结点的key,比它的左孩子key大,比它的右孩子key小;
  • 任何一个结点的左子树与右子树都是平衡二叉树,并且高度之差的绝对值不超过 1。

2、树的高度

一棵树的高度,是指从树根结点到达最远的叶子结点的路径上经过的结点数。所以,求树的高度我们可以采用递归的方式。主要有以下三种情况:

1)空树的树高为 0;

2)叶子结点的树高为 1;

3)其它结点的树高,等于左右子树树高的大者加 1;

3、平衡因子

二叉树上的结点的 左子树高度 减去 右子树高度 的值称为 平衡因子,即 BF(Balance Factor)。 根据平衡二叉树的定义,树上所有结点的平衡因子只可能是 -1、0 和 1。即只要二叉树上有一个结点的平衡因子的绝对值大于 1,则该二叉树就是不平衡的。

二、平衡二叉树存储结构

对于平衡二叉树,首先是二叉搜索树,所以会有 左右孩子指针数据域,然后特殊之处是需要平衡因子,而平衡因子可以通过节点树的高度来计算,所以需要加一个 高度。

struct TreeNode {int val;struct TreeNode* left;struct TreeNode* right;int height;TreeNode(int x, int h = 1) :val(x), left(nullptr), right(nullptr), height(h){}
};

三、平衡二叉树基本接口

1、获取树高

int AVLGetHeight(TreeNode* node)
{if (node == nullptr) {return 0;}return node->height;
}

获取树高期望做到 O(1) 的时间复杂度,height 字段是需要存储在结点上的,并且每次树的 插入、删除 操作都需要更新这个值

空结点的树高为 0,其它结点的树高可以直接通过获取树结点结构体的成员变量height 字段快速获取。

2、计算树高

每次对树进行插入、删除操作,对树的原结点高度会有影响,所以需要重新计算,更新这个值。

//计算树高(结点增删需要重新计算树高)
void AVLCalcHeight(TreeNode* node) {if (nullptr == node) {              return ;}                                node->height = 1 + std::max(AVLGetHeight(node->left), AVLGetHeight(node->right));
}

 3、获取平衡因子

同理,每次对树进行插入、删除操作,对树的原结点的平衡因子也会有影响,所以也需要重新计算这个值。

//获取平衡因子
int AVLGetBalanceFactor(TreeNode* node) {if (node == nullptr)return 0;                                                return AVLGetHeight(node->left) - AVLGetHeight(node->right); 
}

4、旋转操作

每次对树进行插入、删除操作,可能会引起树的平衡,此时就需要通过旋转操作来使树重新回到平衡状态。

假设本来这棵树是平衡的,在我们在插入一个结点以后,导致了这棵树的不平衡,那么必然是这棵树根结点的平衡因子从 +1 变成了 +2,或者从 -1 变成了 -2 。我们来分别讨论这两种情况。

实际上,总共有四种情况:

1)LL(往左子树的左子树插入一个结点),根结点的平衡因子 +2,左子树根结点平衡因子 +1;

2)RR(往右子树的右子树插入一个结点),根结点的平衡因子 -2,右子树根结点平衡因子 -1;

3)LR(往左子树的右子树插入一个结点),根结点的平衡因子 +2,左子树根结点平衡因子 -1;

4)RL(往右子树的左子树插入一个结点),根结点的平衡因子 -2,右子树根结点平衡因子 +1;

结论:+1 变成 +2 的情况发生在 LL 和 LR,即往当前树的左子树插入一个结点的情况;-1 变成 -2 的情况发生在 RL 和 RR,即往当前树的右子树插入一个结点的情况。

(1) LL

LL,即往左子树的左子树插入一个结点。这种情况下,如果树出现了不平衡的情况,根结点的当前平衡因子一定是 +2。

如上图所示,在左子树插入T5结点后,平衡二叉树的平衡状态被打破,要想回到平衡状态需要对树进行一个右旋操作。

如图所示,以左子树根结点T1作支点右旋后,重新达到平衡。总共有以下关系发生了变化:

(1)T1变成了新的树根

(2)T和T1父子关系发生了交换

(3)T4的父节点由T1变为T

右旋源码

//右旋
TreeNode* RRotate(TreeNode* T)
{TreeNode* LNode = T->left;T->left = LNode->right;LNode->right = T;AVLCalcHeight(T);AVLCalcHeight(LNode);return LNode;
}

经过右旋后,只有T1和T的高度发生了变化,所以需要对它们重新计算高度。

LL型旋转处理

// LL 型右旋处理
TreeNode* AVLTreeLL(TreeNode* T) {return RRotate(T);
}
(2)RR

RR,即往右子树的右子树插入一个结点。这种情况下,如果树出现了不平衡的情况,根结点的当前平衡因子一定是 -2。

如上图所示,在右子树插入T5结点后,平衡二叉树的平衡状态被打破,要想回到平衡状态需要对树进行一个左旋操作。

如图所示,以右子树根结点T2作支点左旋后,重新达到平衡。总共有以下关系发生了变化:

(1)T2变成了新的树根

(2)T和T2父子关系发生了交换

(3)T3的父节点由T2变为T

左旋源码

//左旋
TreeNode* LRotate(TreeNode* T)
{TreeNode* RNode = T->right;T->right = RNode->left;RNode->left = T;AVLCalcHeight(T);AVLCalcHeight(RNode);return RNode;
}

RR型处理源码

//RR型左旋处理
TreeNode* AVLTreeRR(TreeNode* T) {return LRotate(T);
}
(3)LR

LR,即往左子树的右子树插入一个结点。这种情况下,如果树出现了不平衡的情况的话,根结点的当前平衡因子一定是 +2。

假设以左子树的右子树T4结点为支点,对左子树进行一次左旋操作,得到如下图所示:

可以看到,经过一次左旋得到新树,形状和LL型一致,所以接下来再按照型LL处理,再右旋一次即可达到平衡状态

所以对于LR型的处理主要有两步:

(1)对树T的左子树进行左旋

(2)对树T进行右旋

LR型处理源码

//LR型左旋+右旋处理
TreeNode* AVLTreeLR(TreeNode* T) {T->left = LRotate(T->left);   //左旋处理并修改T的左指针指向return RRotate(T);    //对T进行右旋处理       
}
 (4)RL

RL,即往右子树的左子树插入一个结点。这种情况下,如果树出现了不平衡的情况的话,根结点的当前平衡因子一定是 -2。

假设以右的左子树T4结点为支点,对右子树进行一次右旋操作,得到如下图所示:

可以看到,经过一次右旋得到新树,形状和RR型一致,所以接下来再按照型RR型处理,再左旋一次即可达到平衡状态

所以对于RL型的处理主要有两步:

(1)对树T的右子树进行右旋

(2)对树T进行左旋

RL型处理源码

//RL型右旋+左旋处理
TreeNode* AVLTreeRL(TreeNode* T) {T->right = RRotate(T->right);    // 右子树进行右旋处理并修改T的右指针指向return LRotate(T);               // 对T树进行左旋处理
}

四、平衡二叉树基本操作

1、查找

(1)查找定值

对于要查找的数据 data,从根结点出发,每次选择左子树或者右子树进行查找, n 个结点的树高最多为\log {_{2}}^{n},所以查找的时间复杂度为 O(\log {_{2}}^{n}) ,总共四种情况依次进行判断:

1)若为空树,直接返回 false;

2) data 小于 树根结点的数据域,说明 data 对应的结点不在根结点,也不在右子树上,则递归返回左子树的 查找 结果;

3) data 大于 树根结点的数据域,说明 data 对应的结点不在根结点,也不在左子树上,则递归返回右子树的 查找 结果;

4) data 等于 树根结点的数据域,则直接返回 true ;

bool AVLFind(TreeNode* T, int data) {if (T == nullptr) {return false;                        // 空树}if (data < T->val) {return AVLFind(T->left, data);       // data<val,递归查找左子树}else if (data > T->val) {return AVLFind(T->right, data);      //  data>val,递归查找右子树}return true;                             //  data=val
}
(2)查找最小值结点

迭代找到树的最左结点即可。

//找最小值结点
TreeNode* AVLGetMin(TreeNode* T) {while (T && T->left)   T = T->left;       return T;              
}
(3)查找最大值

迭代找到树的最右结点即可。

//找最大值结点
TreeNode* AVLGetMax(TreeNode* T) {while (T && T->right)  T = T->right;      return T;              
}

2、平衡

每次当我们对树的结点进行插入或者删除的时候,都有可能打破树的平衡性,这时候就需要一些旋转操作来使树重新恢复平衡。 究竟是进行左旋,右旋,还是双旋,就要通过平衡因子来判断了。

令根结点为 T ,左子树的根结点为 L ,右子树的根结点为 R , \displaystyle T_{bf}代表根结点的平衡因子,\displaystyle L{_{bf}}代表左子树根的平衡因子, R_{bf}代表右子树根的平衡因子。总共分为以下四种情况:

1)  \displaystyle T_{bf} > 1 , \displaystyle L{_{bf}} > 0 ,则为 LL 型,需要进行一次右旋;

2)  \displaystyle T_{bf} > 1 , \displaystyle L{_{bf}} ≤ 0 ,则为 LR 型,需要进行一次双旋;

3)  \displaystyle T_{bf} < −1 , R_{bf} > 0 ,则为 RL 型,需要进行一次双旋;

4)  \displaystyle T_{bf} < −1 , R_{bf} ≤ 0 ,则为 RR 型,需要进行一次左旋

 平衡源码

//平衡选转
TreeNode* AVLBalance(TreeNode* T) {int bf = AVLGetBalanceFactor(T);if (bf > 1) {if (AVLGetBalanceFactor(T->left) > 0)T = AVLTreeLL(T);                 // LL型,右旋一次elseT = AVLTreeLR(T);                 // LR型,左旋+右旋 }if (bf < -1) {if (AVLGetBalanceFactor(T->right) > 0)T = AVLTreeRL(T);                 // RL型,右旋+左旋 elseT = AVLTreeRR(T);                 // RR型,左旋一次}AVLCalcHeight(T);                         // 重新计算根结点高度,因为之前旋转时并未完成相关操作return T;                                 
}

3、插入

对于要插入的数据 data ,从根结点出发,分情况依次判断:

1)若为空树,则创建一个值为 data 的结点并且返回;

2) data 的值 等于 树根结点的值,无须执行插入,直接返回根结点;

3) data 的值 小于 树根结点的值,那么插入位置一定在 左子树,递归执行插入左子树的过程,并且返回插入结果作为新的左子树

4) data 的值 大于 树根结点的值,那么插入位置一定在 右子树,递归执行插入右子树的过程,并且返回插入结果作为新的右子树

最后,在3或4情况执行完成后,需要对树执行 平衡 操作。

插入源码

TreeNode* AVLInsert(TreeNode* T, int data) {if (T == nullptr) {T = new TreeNode(data);               // 空树,创建val=data的结点return T;}if (data == T->val) {return T;                              // data已经存在}else if (data < T->val) {T->left = AVLInsert(T->left, data);    // 递归查找左子树适合位置,插入 }else {T->right = AVLInsert(T->right, data);  // 递归查找右子树适合位置,插入 }return AVLBalance(T);                      // 重新平衡 
}

4、删除

(1)删除根结点

对一棵平衡二叉树,删除它的根结点,需要保证它还是一棵二叉平衡树,则有如下四种情况:

1)空树,无须执行删除,直接返回空;

2)只有左子树时,将根结点空间释放后,返回左子树;

3)只有右子树时,将根结点空间释放后,返回右子树;

4)当左右子树都有时,根据左右子树的平衡性分情况讨论:如果左子树更高,则从左子树选择最大值替换根结点,并且递归删除左子树对应结点;右子树更高,则从右子树选择最小值替换根结点,并且递归删除右子树对应结点;

5)最后,重新计算所有树高,并且返回根结点;

//删除根结点
TreeNode* AVLRemoveRoot(TreeNode* T) {TreeNode* delNode = nullptr;TreeNode* retNode = nullptr;if (T == nullptr) {return nullptr;                 // 空树,直接返回 }if (T->right == nullptr) {    // 只有左子树(包含单节点情况),释放根结点空间后,返回左子树根结点retNode = T->left;delete T;}else if (T->left == nullptr) {    // 只有右子树,释放根结点空间后,返回右子树根结点 retNode = T->right;delete T;}else {								// 左右子树都存在 if (AVLGetHeight(T->left) > AVLGetHeight(T->right)) {  // 左子树高于右子树retNode = T;//获取左子树最大值结点,并以它的值作为根结点的新值TreeNode* cur = T->left;TreeNode* pcur = T;while (cur->right){pcur = cur;cur = cur->right;}delNode = cur;retNode->val = cur->val;if (pcur->right == cur) {//左子树的最大值在左子树的右子树上pcur->right = cur->left;}else {//左子树的最大值为左子树的根pcur->left = cur->left;}delete delNode;retNode = AVLBalance(T);AVLCalcAllHeight(retNode);}else {   // 右子树高于左子树retNode = T;//获取右子树最小值结点,并以它的值作为根结点的新值TreeNode* cur = T->right;TreeNode* pcur = T;while (cur->left){pcur = cur;cur = cur->left;}delNode = cur;retNode->val = cur->val;if (pcur->left == cur) {//右子树的最小值在右子树的左子树上pcur->left = cur->right;}else {//右子树的最小值为右子树的根pcur->right = cur->right;}delete delNode;retNode = AVLBalance(T);AVLCalcAllHeight(retNode);}}return retNode;
}
(2)删除指定结点

删除值为 data 的结点的过程,从根结点出发,总共四种情况依次判断:

1)空树,不存在结点,直接返回空 ;

2) data 的值 等于 树根结点的值,则调用 删除根结点 的接口,这个过程下文会详细介绍;

3) data 的值 小于 树根结点的值,则需要删除的结点一定不在右子树上,递归调用删除左子树的对应结点,并且将删除结点返回的子树作为新的左子树;

4) data 的值 大于 树根结点的值,则需要删除的结点一定不在左子树上,递归调用删除右子树的对应结点,并且将删除结点返回的子树作为新的右子树;

5)最后,对于 3) 和 4) 这两步,需要对树执行 平衡 操作。

TreeNode* AVLRemove(TreeNode* root,int val)
{if (nullptr == root) {return nullptr;}if (val == root->val) {return AVLRemoveRoot(root);}else if (val < root->val) {root->left = AVLRemove(root->left, val);}else if (val > root->val) {root->right = AVLRemove(root->right, val);}root = AVLBalance(root);AVLCalcAllHeight(root);return root;
}

五、平衡二叉树的缺点

由于AVL树必须保证左右子树平衡,Max(最大树高-最小树高) <= 1,所以在插入的时候很容易出现不平衡的情况,一旦这样,就需要进行旋转以求达到平衡。

正是由于这种严格的平衡条件,导致AVL需要花大量时间在调整上,故AVL树一般使用场景在于查询场景, 而不是 增加、删除频繁的场景。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/322883.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于gamma矫正的照片亮度调整(python和opencv实现)

import cv2 import numpy as npdef adjust_gamma(image, gamma1.0):invGamma 1.0 / gammatable np.array([((i / 255.0) ** invGamma) * 255 for i in np.arange(0, 256)]).astype("uint8")return cv2.LUT(image, table)# 读取图像 original cv2.imread("tes…

Redis命令---List篇

目录 1.Redis Lindex 命令 - 通过索引获取列表中的元素简介语法可用版本: > 1.0.0返回值: 列表中下标为指定索引值的元素。 如果指定索引值不在列表的区间范围内&#xff0c;返回 nil 。 示例 2.Redis Rpush 命令 - 在列表中添加一个或多个值简介语法可用版本: > 1.0.0返…

注意!2024年中科院预警名单将于本月发布!(附往期名单+分区表下载)

2024年中科院预警期刊何时发布 2023年12月27日&#xff0c;《2023年中国科学院文献情报中心期刊分区表》正式发布&#xff01; 此次分区表发布有几项重要变动&#xff1a; &#x1f449;可参考&#xff1a;2023中科院分区期刊变动情况 重磅&#xff01;2023年中科院分区表最…

AIGC|一文梳理「AI视频生成」技术核心基础知识和模型应用

大家好&#xff0c;我是猫先生&#xff0c;AI技术爱好者与深耕者&#xff01;&#xff01; 2022年是AIGC&#xff08;生成式AI&#xff09;元年&#xff01;从这一年开始&#xff0c;可谓是百家争鸣&#xff0c;各种技术层出不穷&#xff0c;再次迸发出AI的活力。从DALLE 2、S…

校园跑腿小程序(前后端已完成)可做项目,可当毕设,支持二创

此小程序为我单独在小程序上运行的结果&#xff0c;图片信息、列表信息等没有出现是因为服务器到期了&#xff0c;资源被释放了&#xff0c;无法显示。但是后端是已经实现了的&#xff0c;有兴趣的同学可以私聊我。 效果预览

如何设置pygame窗口的标题

通过 pygame.display.set_caption("这是标题") 可以绘制窗口的标题 import pygame #导包 from pygame.locals import* import sysscreen_width600 screen_height600 pygame.init() #初始化 screen pygame.display.set_mode(size(screen_width,screen_height)) py…

记录一下事件捕获问题的解决方法。

这里出现了一个事件捕获的问题&#xff0c;input上用focus得到焦点去打开弹窗页面。返回后点击详情&#xff0c;出现出弹窗的事件。所有在input发生焦点事件&#xff0c;所有在input外面添加点击事件打开&#xff0c;以防止出现自动的得到焦点的事件。

docker DM 达梦

Docker安装 | 达梦技术文档 (dameng.com)https://eco.dameng.com/document/dm/zh-cn/start/dm-install-docker.html

【100个Cocos实例】仿LOL手游中技能冷却效果

引言 Cocos中技能冷却效果 大家好&#xff0c;在游戏开发中&#xff0c;技能释放后&#xff0c;往往会有一个冷却效果&#xff0c;俗称CD。 主要用来规定玩家使用某个技能的间隔&#xff0c;限制频繁使用。 本文将介绍一下如何在Cocos中实现技能冷却效果。 本文源工程可在…

【MySQL】字符集与排序规则

在MySQL数据库中&#xff0c;字符集&#xff08;Character Set&#xff09;和排序规则&#xff08;Collation,也称字符集校验规则&#xff09;是重要的概念&#xff0c;它们对于正确存储和比较数据至关重要。 字符集与排序规则 字符集是一组字符的集合&#xff0c;与数字编码…

Echart 属性设置

一、设置图形在容器的空间占比 通过设置option.grid属性 grid: {left: 0,right: 0,bottom: 0,top: 0,containLabel: true } 为了方便理解把值都设置成0&#xff0c;我们把图表当成一个子组件&#xff0c;上面的left&#xff0c;right&#xff0c;bottom&#xff0c;top的设置…

pyqtgraph 教程

pyqtgraph 教程 简介 PyQtGraph 是一个用于科学和工程数据可视化的开源库&#xff0c;基于 PyQt 和 NumPy 构建而成。它提供了丰富的绘图工具和交互功能&#xff0c;可以用于创建高性能的实时数据图表、图像显示和信号处理应用。 以下是 PyQtGraph 的一些特点和功能&#xf…