深度学习分类问题中accuracy等评价指标的理解

在处理深度学习分类问题时,会用到一些评价指标,如accuracy(准确率)等。刚开始接触时会感觉有点多有点绕,不太好理解。本文写出我的理解,同时以语音唤醒(唤醒词识别)来举例,希望能加深理解这些指标。

1,TP / FP / TN / FN

下表表示为一个二分类的混淆矩阵(多分类同理,把不属于当前类的都认为是负例),表中的四个参数均用两个字母表示,第一个字母表示判断结果正确与否(正确用T(True),错误用F(False),第二个字母表示判定结果(正例用P(Positive),负例用N(Negative))。四个参数的具体意思如下:

TP (True Positive):表示实际为正例,判定也为正例的次数,即表示判定为正例且判定正确的次数。

FP (False Positive): 表示实际为负例,却判定为正例的次数,即表示判定为正例但判断错误的次数。

TN (True Negative):表示实际为负例,判定也为负例的次数,即表示判定为负例且判定正确的次数。

FN (False Negative): 表示实际为正例,却判定为负例的次数,即表示判定为负例但判断错误的次数。

为了帮助理解,我以智能音箱中的语音唤醒(假设唤醒词为“芝麻开门”)来举例。这里正例就是唤醒词“芝麻开门”,负例就是除了“芝麻开门”之外的其他词,即非唤醒词,如“阿里巴巴”。设定评估时说唤醒词和非唤醒词各100次,TP就表示说了“芝麻开门”且被识别的次数(假设98次),FN就表示说了“芝麻开门”却没被识别(判定成负例)的次数(假设2次),FP就表示说了非唤醒词却被识别(判定成正例)的次数(假设1次),TN就表示说了非唤醒词且没被识别的次数(假设99次)。

2,accuracy / precision / recall

accuracy是准确率,表示判定正确的次数与所有判定次数的比例。判定正确的次数是(TP+TN),所有判定的次数是(TP + TN + FP +FN),所以

在语音唤醒例子中,TP = 98,TN = 99,FP = 1, FN = 2, 所以accuracy = (98 + 99) / (98 + 99 + 1 + 2) = 98.5%,即准确率为 98.5%。

precision是精确率,表示正确判定为正例的次数与所有判定为正例的次数的比例。正确判定为正例的次数是TP,所有判定为正例的次数是(TP + FP),所以

在语音唤醒例子中,TP = 98, FP = 1, 所以precision = 98 / (98 + 1) = 99%,即精确率为 99%。

recall是召回率,表示正确判定为正例的次数与所有实际为正例的次数的比例。正确判定为正例的次数是TP,所有实际为正例的次数是(TP + FN),所以

在语音唤醒例子中,TP = 98, FN = 2, 所以recall = 98 / (98 + 2) = 98%,即召回率为 98%。在语音唤醒场景下,召回率也叫唤醒率,表示说了多少次唤醒词被唤醒次数的比例。

1,  FAR / FRR

FAR (False Acceptance Rate)是错误接受率,也叫误识率,表示错误判定为正例的次数与所有实际为负例的次数的比例。错误判定为正例的次数是FP,所有实际为负例的次数是(FP + TN),所以

在语音唤醒例子中,FP = 1, TN = 99, 所以FAR = 1 / (99 + 1) = 1%,即错误接受率为 1%。在语音唤醒场景下,错误接受率也叫误唤醒率,表示说了多少次非唤醒词却被唤醒次数的比例。

FRR (False Rejection Rate)是错误拒绝率,也叫拒识率,表示错误判定为负例的次数与所有实际为正例的次数的比例。错误判定为负例的次数是FN,所有实际为正例的次数是(TP + FN),所以

在语音唤醒例子中,FN = 2, TP = 98, 所以FRR = 2/ (2 + 98) = 2%,即错误拒绝率为 2%。在语音唤醒场景下,错误拒绝率也叫不唤醒率,表示说了多少次唤醒词却没被唤醒次数的比例。

2,  ROC曲线 / EER

ROC(receiver operating characteristic curve)曲线是“受试者工作特征”曲线,是一种已经被广泛接受的系统评价指标,它反映了识别算法在不同阈值上,FRR(拒识率)和FAR(误识率)的平衡关系。ROC曲线中横坐标是FRR(拒识率),纵坐标是FAR(误识率),等错误率(EER Equal-Error Rate)是拒识率和误识率的一个平衡点,等错误率能够取到的值越低,表示算法的性能越好。

上图是ROC曲线的示意图,我从语音唤醒的场景来解释。从上图看出FRR低/FAR高时,即拒识率低、误识率高时,智能音箱很容易被唤醒,即很好用。FRR高/FAR低时,即拒识率高、误识率低时,智能音箱不容易被唤醒,即不太方便用,但是很难误唤醒,安全性很高。真正使用时要找到一个FAR和FRR的平衡点(EER),也就是不那么难唤醒,方便使用,同时也不会有高的误唤醒,保证安全。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/323989.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

教学/直播/会议触摸一体机定制_基于展锐T820安卓核心板方案

触控一体机是一种集先进的触摸屏、工控和计算机技术于一体的设备。它取代了传统的键盘鼠标输入功能,广泛应用于教学、培训、工业、会议、直播、高新科技展示等领域。触摸一体机的应用提升了教学、会议和展示的互动性和信息交流。 触摸一体机方案基于国产6nm旗舰芯片…

[Vulnhub靶机] DriftingBlues: 3

[Vulnhub靶机] DriftingBlues: 3靶机渗透思路及方法(个人分享) 靶机下载地址: https://download.vulnhub.com/driftingblues/driftingblues3.ova 靶机地址:192.168.67.19 攻击机地址:192.168.67.3 一、信息收集 1.…

时代变了,Spring 官方抛弃了 Java 8!

先容许我吐槽一句:Spring 官方,窝草尼玛! 原谅我很愤怒!最近编程导航星球和群友们反复问一个问题:为啥用 IDEA 创建 Spring Boot 项目时,不能选择 Java 8 了? 我本来以为是 IDEA 版本更新导致的…

SpringBoot集成沙箱支付

前言 支付宝沙箱支付(Alipay Sandbox Payment)是支付宝提供的一个模拟支付环境,用于开发和测试支付宝支付功能的开发者工具。在真实的支付宝环境中进行支付开发和测试可能涉及真实资金和真实用户账户,而沙箱环境则提供了一个安全…

FlagData 2.0:全面、高效的大模型训练数据治理工具集

数据是大模型训练至关重要的一环。数据规模、质量、配比,很大程度上决定了最后大模型的性能表现。无论是大规模的预训练数据、精益求精的SFT数据都依托于一个完整的“获取-准备-处理-分析”数据流程。然而,当前的开源工具通常只专注于流程中的某一环节&a…

贪心算法:活动选择问题以及贪心选择性质证明

什么时候使用贪婪算法? – 贪心选择特性: 全局的最优解可以通过局部的最优(贪婪) 选择得到. • 动态规划需要检查子问题的解。 – 最优子结构: 问题的最优解包含了其子问题的最优解. • 例如, 如果 A 是S的最优解, 那么 A A - {1} 是 的最优解. …

网桥的基础知识

1、什么是网桥? 网桥:一种桥接器,连接两个局域网的一种存储/转发设备。工作在数据链路层,是早期的两端口二层网络设备。可将一个大的VLAN分割为多个网段,或者将两个以上的LAN互联为一个逻辑LAN,使得LAN上的…

队列的数据结构实验报告

实验目的: 1、理解队列数据结构的概念和特点。 2、熟悉队列的应用场景和算法实现。 二、实验内容(实验题目与说明) 实现了一个循环队列,具有功能: 初始化队列。判断队列是否为空。判断队列是否已满。入队。出队。…

Kubernetes 1.29:稳定性提升、性能升级,全新功能来袭!

关注【云原生百宝箱】公众号,获取更多云原生消息 Kubernetes 1.29版本带来了多项重要变化和功能更新。这次发布将ReadWriteOncePod从Alpha版本升级到稳定版,引入了nftables来取代iptables以提升性能,将SidecarContainers功能升级至Beta并默认…

打工人的2.0时代,只需要一副AR眼镜!

在数字化时代,工业行业中的生产效率如何得到提升?工业AR眼镜或许是一个不错的选择。不过工业AR眼镜真的可以协助员工处理工作中所遇到的各种问题吗?我们以制造业、医疗行业、船舶业的不同从业者为例: 假如你是一名制造业从业者&am…

阿里云服务器配置jupyter(新手入门,详细全面)

设置安全组 1.租好服务器后在阿里云服务器平台上打开控制台(右上角) 2.点开自己的云服务器控制台,在左栏“安全组”部分添加安全规则,点击“管理规则” 单击“手动添加”,将安全组设为如下格式,端口范围…

面试算法89:房屋偷盗

题目 输入一个数组表示某条街道上的一排房屋内财产的数量。如果这条街道上相邻的两幢房屋被盗就会自动触发报警系统。请计算小偷在这条街道上最多能偷取到多少财产。例如,街道上5幢房屋内的财产用数组[2,3,4,5,3]表示…