数据结构与算法之美学习笔记:42 | 动态规划实战:如何实现搜索引擎中的拼写纠错功能?

目录

  • 前言
  • 如何量化两个字符串的相似度?
  • 如何编程计算莱文斯坦距离?
  • 如何编程计算最长公共子串长度?
  • 解答开篇

前言

在这里插入图片描述
本节课程思维导图:
在这里插入图片描述
利用 Trie 树,可以实现搜索引擎的关键词提示功能,这样可以节省用户输入搜索关键词的时间。实际上,搜索引擎在用户体验方面的优化还有很多,比如你可能经常会用的拼写纠错功能。

当你在搜索框中,一不小心输错单词时,搜索引擎会非常智能地检测出你的拼写错误,并且用对应的正确单词来进行搜索。作为一名软件开发工程师,你是否想过,这个功能是怎么实现的呢?

如何量化两个字符串的相似度?

要解答开篇的问题,我们就要先来看,如何量化两个字符串之间的相似程度呢?有一个非常著名的量化方法,那就是编辑距离(Edit Distance)。

顾名思义,编辑距离指的就是,将一个字符串转化成另一个字符串,需要的最少编辑操作次数(比如增加一个字符、删除一个字符、替换一个字符)。编辑距离越大,说明两个字符串的相似程度越小;相反,编辑距离就越小,说明两个字符串的相似程度越大。对于两个完全相同的字符串来说,编辑距离就是 0。

根据所包含的编辑操作种类的不同,编辑距离有多种不同的计算方式,比较著名的有莱文斯坦距离(Levenshtein distance)和最长公共子串长度(Longest common substring length)。其中,莱文斯坦距离允许增加、删除、替换字符这三个编辑操作,最长公共子串长度只允许增加、删除字符这两个编辑操作。

而且,莱文斯坦距离和最长公共子串长度,从两个截然相反的角度,分析字符串的相似程度。莱文斯坦距离的大小,表示两个字符串差异的大小;而最长公共子串的大小,表示两个字符串相似程度的大小。

关于这两个计算方法,我举个例子给你说明一下。这里面,两个字符串 mitcmu 和 mtacnu 的莱文斯坦距离是 3,最长公共子串长度是 4。
在这里插入图片描述

如何编程计算莱文斯坦距离?

了解了编辑距离的概念之后,我们来看,如何快速计算两个字符串之间的编辑距离?我现在就给你展示一下,解决这个问题,我的完整的思考过程。

这个问题是求把一个字符串变成另一个字符串,需要的最少编辑次数。整个求解过程,涉及多个决策阶段,我们需要依次考察一个字符串中的每个字符,跟另一个字符串中的字符是否匹配,匹配的话如何处理,不匹配的话又如何处理。所以,这个问题符合多阶段决策最优解模型。

我们前面讲了,贪心、回溯、动态规划可以解决的问题,都可以抽象成这样一个模型。要解决这个问题,我们可以先看一看,用最简单的回溯算法,该如何来解决。

回溯是一个递归处理的过程。
如果 a[i]与 b[j]匹配,我们递归考察 a[i+1]和 b[j+1]。
如果 a[i]与 b[j]不匹配,那我们有多种处理方式可选:

  1. 可以删除 a[i],然后递归考察 a[i+1]和 b[j];
  2. 可以删除 b[j],然后递归考察 a[i]和 b[j+1];
  3. 可以在 a[i]前面添加一个跟 b[j]相同的字符,然后递归考察 a[i]和 b[j+1];
  4. 可以在 b[j]前面添加一个跟 a[i]相同的字符,然后递归考察 a[i+1]和 b[j];
  5. 可以将 a[i]替换成 b[j],或者将 b[j]替换成 a[i],然后递归考察 a[i+1]和 b[j+1]。
    代码如下:
private char[] a = "mitcmu".toCharArray();
private char[] b = "mtacnu".toCharArray();
private int n = 6;
private int m = 6;
private int minDist = Integer.MAX_VALUE; // 存储结果
// 调用方式 lwstBT(0, 0, 0);
public lwstBT(int i, int j, int edist) {if (i == n || j == m) {if (i < n) edist += (n-i);if (j < m) edist += (m - j);if (edist < minDist) minDist = edist;return;}if (a[i] == b[j]) { // 两个字符匹配lwstBT(i+1, j+1, edist);} else { // 两个字符不匹配lwstBT(i + 1, j, edist + 1); // 删除a[i]或者b[j]前添加一个字符lwstBT(i, j + 1, edist + 1); // 删除b[j]或者a[i]前添加一个字符lwstBT(i + 1, j + 1, edist + 1); // 将a[i]和b[j]替换为相同字符}
}

根据回溯算法的代码实现,我们可以画出递归树,看是否存在重复子问题。如果存在重复子问题,那我们就可以考虑能否用动态规划来解决;如果不存在重复子问题,那回溯就是最好的解决方法。
在这里插入图片描述
在递归树中,每个节点代表一个状态,状态包含三个变量 (i, j, edist),其中,edist 表示处理到 a[i]和 b[j]时,已经执行的编辑操作的次数。

在递归树中,(i, j) 两个变量重复的节点很多,比如 (3, 2) 和 (2, 3)。对于 (i, j) 相同的节点,我们只需要保留 edist 最小的,继续递归处理就可以了,剩下的节点都可以舍弃。所以,状态就从 (i, j, edist) 变成了 (i, j, min_edist),其中 min_edist 表示处理到 a[i]和 b[j],已经执行的最少编辑次数。
这个问题的状态转移方式,要比之前两节课中讲到的例子都要复杂很多。今天这个问题,状态 (i, j) 可能从 (i-1, j),(i, j-1),(i-1, j-1) 三个状态中的任意一个转移过来。

在这里插入图片描述
基于刚刚的分析,我们可以尝试着将把状态转移的过程,用公式写出来。

如果:a[i]!=b[j],那么:min_edist(i, j)就等于:
min(min_edist(i-1,j)+1, min_edist(i,j-1)+1, min_edist(i-1,j-1)+1)如果:a[i]==b[j],那么:min_edist(i, j)就等于:
min(min_edist(i-1,j)+1, min_edist(i,j-1)+1,min_edist(i-1,j-1))其中,min表示求三数中的最小值。     

了解了状态与状态之间的递推关系,我们画出一个二维的状态表,按行依次来填充状态表中的每个值。
在这里插入图片描述
具体代码如下:

public int lwstDP(char[] a, int n, char[] b, int m) {int[][] minDist = new int[n][m];for (int j = 0; j < m; ++j) { // 初始化第0行:a[0..0]与b[0..j]的编辑距离if (a[0] == b[j]) minDist[0][j] = j;else if (j != 0) minDist[0][j] = minDist[0][j-1]+1;else minDist[0][j] = 1;}for (int i = 0; i < n; ++i) { // 初始化第0列:a[0..i]与b[0..0]的编辑距离if (a[i] == b[0]) minDist[i][0] = i;else if (i != 0) minDist[i][0] = minDist[i-1][0]+1;else minDist[i][0] = 1;}for (int i = 1; i < n; ++i) { // 按行填表for (int j = 1; j < m; ++j) {if (a[i] == b[j]) minDist[i][j] = min(minDist[i-1][j]+1, minDist[i][j-1]+1, minDist[i-1][j-1]);else minDist[i][j] = min(minDist[i-1][j]+1, minDist[i][j-1]+1, minDist[i-1][j-1]+1);}}return minDist[n-1][m-1];
}private int min(int x, int y, int z) {int minv = Integer.MAX_VALUE;if (x < minv) minv = x;if (y < minv) minv = y;if (z < minv) minv = z;return minv;
}

关于复杂算法问题的解决思路,我还有一些经验、小技巧,可以分享给你。

当我们拿到一个问题的时候,我们可以先不思考,计算机会如何实现这个问题,而是单纯考虑“人脑”会如何去解决这个问题。人脑比较倾向于思考具象化的、摸得着看得见的东西,不适合思考过于抽象的问题。所以,我们需要把抽象问题具象化。那如何具象化呢?我们可以实例化几个测试数据,通过人脑去分析具体实例的解,然后总结规律,再尝试套用学过的算法,看是否能够解决。

除此之外,我还有一个非常有效、但也算不上技巧的东西,我也反复强调过,那就是多练。

如何编程计算最长公共子串长度?

最长公共子串作为编辑距离中的一种,只允许增加、删除字符两种编辑操作。从名字上,你可能觉得它看起来跟编辑距离没什么关系。实际上,从本质上来说,它表征的也是两个字符串之间的相似程度。

针对这个问题,我直接定义状态,然后写状态转移方程。

每个状态还是包括三个变量 (i, j, max_lcs),max_lcs 表示 a[0…i]和 b[0…j]的最长公共子串长度。那 (i, j) 这个状态都是由哪些状态转移过来的呢?

我们先来看回溯的处理思路。我们从 a[0]和 b[0]开始,依次考察两个字符串中的字符是否匹配。
如果 a[i]与 b[j]互相匹配,我们将最大公共子串长度加一,并且继续考察 a[i+1]和 b[j+1]。
如果 a[i]与 b[j]不匹配,最长公共子串长度不变,这个时候,有两个不同的决策路线:

  1. 删除 a[i],或者在 b[j]前面加上一个字符 a[i],然后继续考察 a[i+1]和 b[j];
  2. 删除 b[j],或者在 a[i]前面加上一个字符 b[j],然后继续考察 a[i]和 b[j+1]。

反过来也就是说,如果我们要求 a[0…i]和 b[0…j]的最长公共长度 max_lcs(i, j),我们只有可能通过下面三个状态转移过来:
(i-1, j-1, max_lcs),其中 max_lcs 表示 a[0…i-1]和 b[0…j-1]的最长公共子串长度;
(i-1, j, max_lcs),其中 max_lcs 表示 a[0…i-1]和 b[0…j]的最长公共子串长度;
(i, j-1, max_lcs),其中 max_lcs 表示 a[0…i]和 b[0…j-1]的最长公共子串长度。

如果:a[i]==b[j],那么:max_lcs(i, j)就等于:
max(max_lcs(i-1,j-1)+1, max_lcs(i-1, j), max_lcs(i, j-1));如果:a[i]!=b[j],那么:max_lcs(i, j)就等于:
max(max_lcs(i-1,j-1), max_lcs(i-1, j), max_lcs(i, j-1));其中max表示求三数中的最大值。

代码如下:

public int lcs(char[] a, int n, char[] b, int m) {int[][] maxlcs = new int[n][m];for (int j = 0; j < m; ++j) {//初始化第0行:a[0..0]与b[0..j]的maxlcsif (a[0] == b[j]) maxlcs[0][j] = 1;else if (j != 0) maxlcs[0][j] = maxlcs[0][j-1];else maxlcs[0][j] = 0;}for (int i = 0; i < n; ++i) {//初始化第0列:a[0..i]与b[0..0]的maxlcsif (a[i] == b[0]) maxlcs[i][0] = 1;else if (i != 0) maxlcs[i][0] = maxlcs[i-1][0];else maxlcs[i][0] = 0;}for (int i = 1; i < n; ++i) { // 填表for (int j = 1; j < m; ++j) {if (a[i] == b[j]) maxlcs[i][j] = max(maxlcs[i-1][j], maxlcs[i][j-1], maxlcs[i-1][j-1]+1);else maxlcs[i][j] = max(maxlcs[i-1][j], maxlcs[i][j-1], maxlcs[i-1][j-1]);}}return maxlcs[n-1][m-1];
}private int max(int x, int y, int z) {int maxv = Integer.MIN_VALUE;if (x > maxv) maxv = x;if (y > maxv) maxv = y;if (z > maxv) maxv = z;return maxv;
}

解答开篇

今天的内容到此就讲完了,我们来看下开篇的问题。
当用户在搜索框内,输入一个拼写错误的单词时,我们就拿这个单词跟词库中的单词一一进行比较,计算编辑距离,将编辑距离最小的单词,作为纠正之后的单词,提示给用户。这就是拼写纠错最基本的原理。

针对纠错效果不好的问题,我们有很多种优化思路,我这里介绍几种。

我们并不仅仅取出编辑距离最小的那个单词,而是取出编辑距离最小的 TOP 10,然后根据其他参数,决策选择哪个单词作为拼写纠错单词。比如使用搜索热门程度来决定哪个单词作为拼写纠错单词。
我们还可以用多种编辑距离计算方法,比如今天讲到的两种,然后分别编辑距离最小的 TOP 10,然后求交集,用交集的结果,再继续优化处理。
我们还可以通过统计用户的搜索日志,得到最常被拼错的单词列表,以及对应的拼写正确的单词。搜索引擎在拼写纠错的时候,首先在这个最常被拼错单词列表中查找。如果一旦找到,直接返回对应的正确的单词。这样纠错的效果非常好。
我们还有更加高级一点的做法,引入个性化因素。针对每个用户,维护这个用户特有的搜索喜好,也就是常用的搜索关键词。当用户输入错误的单词的时候,我们首先在这个用户常用的搜索关键词中,计算编辑距离,查找编辑距离最小的单词。

针对纠错性能方面,我们也有相应的优化方式。我讲两种分治的优化思路。

如果纠错功能的 TPS 不高,我们可以部署多台机器,每台机器运行一个独立的纠错功能。当有一个纠错请求的时候,我们通过负载均衡,分配到其中一台机器,来计算编辑距离,得到纠错单词。
如果纠错系统的响应时间太长,也就是,每个纠错请求处理时间过长,我们可以将纠错的词库,分割到很多台机器。当有一个纠错请求的时候,我们就将这个拼写错误的单词,同时发送到这多台机器,让多台机器并行处理,分别得到编辑距离最小的单词,然后再比对合并,最终决定出一个最优的纠错单词。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/324109.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

在微信中接入gemini

参考链接&#xff1a; https://chat.xutongbao.top/

ROS学习笔记(9)进一步深入了解ROS第三步

0.前提 1. (C)Why did you include the header file of the message file instead of the message file itself?&#xff08;为包含消息的头文件而不是消息本身&#xff1f;&#xff09; 回答&#xff1a;msg文件是描述ROS消息字段的文本文件&#xff0c;用于生成不同语言消息…

如何使用loki查询日志中大于某一数字的值的日志

简介 loki是一款轻量级的日志收集中间件&#xff0c;比elk体系占用的内存更小&#xff0c;采用go语言开发&#xff0c;可以利用grafana来查询loki中存储的日志&#xff0c;loki存储日志只对提前预设的标签做索引&#xff0c;所以日志存储空间占用比elk小很多。 方法 loki只对…

Linux系统安全及应用

目录 一、账号安全的基本措施 1、将非登录用户的shell设为nologin 2、锁定长期不使用的账号 3、删除无用账号 4、用chattr锁定重要账号文件&#xff08;如passwd、shadow、fstab&#xff09; 二、密码安全控制 1、对于新建用户可以修改/etc/login.defs文件里的内容来设置…

1.5C语言 双曲正弦函数(*) 优化麦克劳林公式

一.传统算法 #include<stdio.h> #include<math.h> int jc(int x); int main(){double x,eps,y0.0;scanf("%lf%lf",&x,&eps);int de1,i1;double item1.0;while(fabs(item)>eps){itempow(x,i)/jc(de);i2;yitem;}printf("%.6f\n",y); …

【案例】HOOPS Web Platform助力Eurostep简化全球制造流程!

行业&#xff1a;制造业 公司&#xff1a;Eurostep 软件&#xff1a;ShareAspace软件开发包&#xff1a;Hoops Web Platform 挑战&#xff1a; 为制造商打造协同设计产品的云服务平台。结合本地3D功能以增加现有的2D数据功能。在供应链日益全球化的情况下&#xff0c;保证数…

设计模式——最全梳理,最好理解

新年献礼&#xff01; 设计模式呕心梳理 创建型模式 单例模式&#xff08;Singleton Pattern&#xff09;https://blog.csdn.net/qq_34869143/article/details/134874044 整理中... 结构型模式 代理模式&#xff08;Proxy Pattern&#xff09;https://blog.csdn.net/qq_34…

C++基础语法——数组、函数、指针和结构体

本专栏记录C学习过程包括C基础以及数据结构和算法&#xff0c;其中第一部分计划时间一个月&#xff0c;主要跟着黑马视频教程&#xff0c;学习路线如下&#xff0c;不定时更新&#xff0c;欢迎关注。 当前章节处于&#xff1a; >第1阶段-C基础入门 ---------第2阶段实战-通讯…

KVM虚拟化技术

在当今的云计算时代&#xff0c;虚拟化技术已经成为了企业和个人用户的首选。而在众多虚拟化技术中&#xff0c;KVM&#xff08;Kernel-based Virtual Machine&#xff09;虚拟化技术因其高性能、低成本和灵活性而备受青睐。本文将介绍KVM虚拟化技术的原理、特点以及应用场景。…

MySQL基础笔记(5)DCL数据控制语句

数据控制语句&#xff0c;用来管理数据库用户、控制数据库的访问权限~ 目录 一.用户管理 1.查询用户 2.创建用户 3.修改用户密码 4.删除用户 二.权限管理 1.查询权限 2.授予权限 3.撤销权限 一.用户管理 1.查询用户 use MySQL; select * from user; 2.创建用户 crea…

记一次实战云渗透总结

点击星标&#xff0c;即时接收最新推文 云渗透思路 所谓的云渗透通常指SaaS或PaaS渗透&#xff0c;即将服务器端的某些服务搭建在云服务器上&#xff0c;源代码的开发、升级、维护等工作都由提供方进行。从原理上看&#xff0c;云渗透思路与传统渗透思路相差无几。站点必须由底…

【Element】el-form和el-table嵌套实现表格编辑并提交表单校验

一、背景 页面需要用到表格采集用户数据&#xff0c;提交时进行表单校验&#xff1b;即表格中嵌套着表单&#xff0c;保存时进行表单校验 二、功能实现 2.1、el-form和el-table嵌套说明 ① :model"formData" 给表单绑定数据&#xff0c;formData是表单的数据对象 …