LeGO-LOAM 几个特有函数的分析(2)

接上回LeGO-LOAM 几个特有函数的分析(1)

二、广度优先遍历

广度优先遍历(Breadth-First Search, BFS)是一种用于遍历或搜索树或图的算法。这种算法从树的根(或图的某一指定节点)开始,然后探索邻近的节点,之后对每一个邻近的节点,它再去探索它们各自相邻的节点,这个过程持续进行直到访问所有可达的节点。

广度优先遍历的主要特点是它按照距离起始点的“层次”来遍历。首先访问距离起点最近的节点,然后是它们的邻居,如此类推。

2.1 广度优先遍历的步骤:

  1. 初始化:首先将起始节点放入队列中。

  2. 遍历

    • 从队列中弹出一个节点。
    • 检查该节点是否为目标节点。如果是,则完成搜索。
    • 将该节点的所有未访问过的邻居节点加入队列。
  3. 重复:重复步骤2,直到队列为空或找到目标节点。

  4. 结束:当队列为空且目标未找到,或已找到目标节点时,算法结束。

2.2基于 BFS 的点云聚类和外点剔除

2.2.1原理

 

 2.2.2源码注释

    void labelComponents(int row, int col){// use std::queue std::vector std::deque will slow the program down greatly// 声明所需的变量,输入的ROW和col是单帧点云第几行第几列的点// 用于存储距离和角度计算的临时变量float d1, d2, alpha, angle;// 用于存储索引的变量int fromIndX, fromIndY, thisIndX, thisIndY;// 标记是否每个扫描线都至少有一个点被添加bool lineCountFlag[N_SCAN] = {false};//用两个数组分别保存x,yqueueIndX[0] = row;queueIndY[0] = col;//算法标志int queueSize = 1;// 队列开始的索引int queueStartInd = 0;// 队列结束的索引int queueEndInd = 1;// 初始化聚类数组allPushedIndX[0] = row;allPushedIndY[0] = col;//计数int allPushedIndSize = 1;//很巧妙,有有效邻点就加一,每次循环减1,实现bfs广度优先遍历关键while(queueSize > 0){// Pop point// 取出当前点x,y坐标fromIndX = queueIndX[queueStartInd];fromIndY = queueIndY[queueStartInd];//队列大小减一--queueSize;//索引加一++queueStartInd;// Mark popped point// 标记该点为一类,聚类就是给点加标签,标签一致的就是一类labelMat.at<int>(fromIndX, fromIndY) = labelCount;// Loop through all the neighboring grids of popped grid// 检查所有邻点for (auto iter = neighborIterator.begin(); iter != neighborIterator.end(); ++iter){// new index// 计算邻点的索引,其实就是上下左右四个点thisIndX = fromIndX + (*iter).first;thisIndY = fromIndY + (*iter).second;// index should be within the boundary// 如果raw为0或者15,上或者下没有邻点,跳过if (thisIndX < 0 || thisIndX >= N_SCAN)continue;// at range image margin (left or right side)//设置矩阵最两边的点也为邻点,因为VLP16是360度//在cow为0时左边的邻点,在1799if (thisIndY < 0)thisIndY = Horizon_SCAN - 1;//在cow为1799时左边的邻点,在0if (thisIndY >= Horizon_SCAN)thisIndY = 0;// prevent infinite loop (caused by put already examined point back)// 如果该点已被标记,则跳过if (labelMat.at<int>(thisIndX, thisIndY) != 0)continue;// 计算角度差以决定是否将邻点加入到当前区域// 距离雷达远的是D1,近的是D2d1 = std::max(rangeMat.at<float>(fromIndX, fromIndY),rangeMat.at<float>(thisIndX, thisIndY));d2 = std::min(rangeMat.at<float>(fromIndX, fromIndY), rangeMat.at<float>(thisIndX, thisIndY));//(0,-1),(0,1),意味着是一条线上的点,角度是360/1800*3.14/180=0.0035if ((*iter).first == 0)alpha = segmentAlphaX;else//(1,0),(-1,0),意味着是上下两条线上的点,角度是30/(16-1)*3.14/180=0.035alpha = segmentAlphaY;//计算图中angle角度angle = atan2(d2*sin(alpha), (d1 -d2*cos(alpha)));//如果角度大于60度if (angle > segmentTheta){//把此邻点放入队列queueIndX[queueEndInd] = thisIndX;queueIndY[queueEndInd] = thisIndY;//增加size++queueSize;//末尾索引右移++queueEndInd;//把此邻点赋上和之前取出来的点一样的标签labelMat.at<int>(thisIndX, thisIndY) = labelCount;//这行有点被标记过lineCountFlag[thisIndX] = true;//保存聚类结果allPushedIndX[allPushedIndSize] = thisIndX;allPushedIndY[allPushedIndSize] = thisIndY;++allPushedIndSize;}}}// check if this segment is validbool feasibleSegment = false;//如果聚类大于30则认为是一个好的聚类if (allPushedIndSize >= 30)feasibleSegment = true;//如果大于5,而且都是竖着的超过3个,也认为是一个好聚类,可能是树,电线杆else if (allPushedIndSize >= segmentValidPointNum){int lineCount = 0;for (size_t i = 0; i < N_SCAN; ++i)if (lineCountFlag[i] == true)++lineCount;if (lineCount >= segmentValidLineNum)feasibleSegment = true;            }// segment is valid, mark these points//如果聚类成功,标签加一if (feasibleSegment == true){++labelCount;}else{ // segment is invalid, mark these pointsfor (size_t i = 0; i < allPushedIndSize; ++i){//不成功,则标记为999999,代表依托答辩labelMat.at<int>(allPushedIndX[i], allPushedIndY[i]) = 999999;}}}
 需要注意的点:
一是 邻点的定义,就是代表取当前点上下左右四个点
std::pair<int8_t, int8_t> neighbor;
neighbor.first = -1; neighbor.second =  0; neighborIterator.push_back(neighbor);
neighbor.first =  0; neighbor.second =  1; neighborIterator.push_back(neighbor);
neighbor.first =  0; neighbor.second = -1; neighborIterator.push_back(neighbor);
neighbor.first =  1; neighbor.second =  0; neighborIterator.push_back(neighbor);
 二是 巧妙的通过queueSize 实现广度优先遍历算法的核心

开始是int queueSize =1,让其进入循环

while(queueSize > 0){//队列大小减一--queueSize;for (auto iter = neighborIterator.begin(); iter != neighborIterator.end(); ++iter){//如果角度大于60度if (angle > segmentTheta){//增加size++queueSize;}}
}
三是 聚类时候,大于30个点,或者大于5个点,但是有三个竖着的聚为一类

我觉得原因是考虑到竖着的点距离远的因素

四是 通过计算角度来判断是否是邻点

想象一下,是不是D1越长,angle越小

2.3函数的调用

用此种方式实现了一帧雷达所有点的聚类

        for (size_t i = 0; i < N_SCAN; ++i)for (size_t j = 0; j < Horizon_SCAN; ++j)//上一个函数说过地面点label被置为1 //如果这个点既不是地面点也没有聚类过,开始聚类if (labelMat.at<int>(i,j) == 0)labelComponents(i, j);

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/324205.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Spring学习 Spring概述

1.1.Spring介绍 ​ Spring是轻量级Java EE应用开源框架&#xff08;官网&#xff1a; http://spring.io/ &#xff09;&#xff0c;它由Rod Johnson创为了解决企业级编程开发的复杂性而创建 1.2.简化应用开发体现在哪些方面&#xff1f; IOC 解决传统Web开发中硬编码所造成的…

【React系列】Redux(一)管理状态

本文来自#React系列教程&#xff1a;https://mp.weixin.qq.com/mp/appmsgalbum?__bizMzg5MDAzNzkwNA&actiongetalbum&album_id1566025152667107329) 在React的开发过程中&#xff0c;Redux对于我们是非常重要的。 但是对于很多人来说&#xff0c;初次接触redux会感觉r…

通过XML您可以发明自己的标签

XML 仅仅是纯文本 XML 没什么特别的。它仅仅是纯文本而已。有能力处理纯文本的软件都可以处理 XML。 不过&#xff0c;能够读懂 XML 的应用程序可以有针对性地处理 XML 的标签。标签的功能性意义依赖于应用程序的特性。 通过XML您可以发明自己的标签 在之前的例中的标签没有…

ERROR:SyntaxError: Non-ASCII character ‘\xc3‘ in file

报错信息&#xff1a; SyntaxError: Non-ASCII character ‘\xc3’ in file /home/user/ROSpy-LeaderFollower/src/follow_/src/scripts/tb3_flw.py on line 46, but no encoding declared; see http://python.org/dev/peps/pep-0263/ for details 解决办法&#xff1a; pyt…

【mysql django】解决Django提示mysql版本过低

目录 一、解决Django提示mysql版本过低&#xff1a;django.db.utils.NotSupportedError: MySQL 8 or later is required (found 5.7.26) 一、解决Django提示mysql版本过低&#xff1a;django.db.utils.NotSupportedError: MySQL 8 or later is required (found 5.7.26) 报错&…

代码随想录算法训练营第十五天| 二叉树 513. 找树左下角的值 112. 路径总和 106.从中序与后序遍历序列构造二叉树

513. 找树左下角的值 层序遍历 本题用层序遍历可以直接秒了&#xff0c;直接提取每一层中最左边的元素&#xff08;i0&#xff09;&#xff0c;然后保存到最后一层即可。 class Solution { public:int findBottomLeftValue(TreeNode* root) {queue<TreeNode*> que;int…

Python 全栈体系【四阶】(十)

第四章 机器学习 十三、决策树分类 1. 决策树 1.1 什么是决策树 决策树是一种常见的机器学习方法&#xff0c;其核心思想是相同&#xff08;或相似&#xff09;的输入产生相同&#xff08;或相似&#xff09;的输出&#xff0c;通过树状结构来进行决策&#xff0c;其目的是…

Unraid APP下载慢解决方法

1.首先你的APP商城能够打开 这里我已下载Jellyfin为例 使用APP查找镜像,是为了获取下面的配置模板 2.修改地址 默认的地址是 lscr.io/linuxserver/jellyfin服务器在国外,被墙了.下载具慢 我们需要把这个下载源修改成国内的 有很多国内的源,但是我觉得阿里的比较快 3.获…

【设计模式-5】抽象工厂模式的代码实现及使用场景

前面我们了解到工厂方法模式通过引入抽象工厂的概念&#xff0c;使得产品对象的创建可以依赖于具体工厂&#xff0c;但是这种设计模式最大的问题是会造成类的数量爆炸式增长。对于这个问题&#xff0c;抽象工厂模式通过引入两个新的概念&#xff1a;产品等级与产品簇&#xff0…

219. 存在重复元素

给你一个整数数组 nums 和一个整数 k &#xff0c;判断数组中是否存在两个 不同的索引 i 和 j &#xff0c;满足 nums[i] nums[j] 且 abs(i - j) < k 。如果存在&#xff0c;返回 true &#xff1b;否则&#xff0c;返回 false 。 示例 1&#xff1a; 输入&#xff1a;num…

Docker基础学习(配置、命令)

镜像加速 登录阿里云 docker run hello-world分析命令&#xff1a; 开始–>docker在本机中寻找镜像–>有–>以该镜像为模版生产容器实例运行&#xff1b; 开始–>docker在本机中寻找镜像–>无–>去远端下载镜像并运行&#xff0c;若远端无此镜像则返回错误…