机器学习--回归算法

🌳🌳🌳小谈:一直想整理机器学习的相关笔记,但是一直在推脱,今天发现知识快忘却了(虽然学的也不是那么深),但还是浅浅整理一下吧,便于以后重新学习。


📙参考:ysu期末复习资料和老师的课件


 1.回归问题

        回归分析用于预测输入变量(自变量)和输出变量(因变量)之间的关系,特别是当输入变量的值发生变化时,输出变量值随之发生变化。

        🍀理解:直观来说回归问题等价于函数拟合,选择一条函数曲线使其很好地拟合已知数据且很好地预测未知数据。

        回归分析根据自变量个数可分为一元回归分析与多元回归分析。

 2.一元线性回归

        线性回归算法假设特征和结果满足线性关系。

        这就意味着可以将输入项分别乘以一些常量,再与偏置项相加得到输出。

        一元线性回归指的是分析只有一个自变量x与因变量y线性相关关系的方法。

过程如下:

举个例子:

左图是以面积为X轴,售价为Y轴建立房屋销售数据的特征空间表示图。

回归分析是:用一条曲线去尽量准的拟合这些数据,然后如果有新的输入过来,我们可以在将曲线上这个点对应的值返回。

3.一元线性回归求解方法

3.1 最小二乘法

最小二乘法的主要思想:就是求解未知参数,使得理论值与观测值之差(即误差,或者说残差)的平方和达到最小。

【所谓最小二乘,其实也可以叫做最小平方和,其目的就是通过最小化误差的平方和,使得拟合对象无限接近目标对象。】

缺点:最小二乘法主要针对于线性函数,有全局最优解且是闭式解,针对更加复杂的函数难起作用

3.2 梯度下降法

梯度下降法是用来计算函数最小值的。

根据计算一次目标函数梯度的样本数量可分为批量梯度下降(Batch graduebt descent, BGD),随机梯度下降(Stochatic gradient decent, SGD),小批量梯度下降(mini-batch gradient descent)。

(1)批量梯度下降 BGD

在训练过程中,每一步迭代都使用训练集的所有内容。

也就是说,利用现有参数对训练集中的每一个输入生成一个估计输出y ̂_i,然后跟实际输出 y_i 比较,统计所有误差,求平均以后得到平均误差,以此来作为更新参数的依据。

优点:由于每一步都利用了训练集中的所有数据,因此当损失函数达到最小值以后,能够保证此时计算出的梯度为0,换句话说,就是能够收敛。因此,使用BGD时不需要逐渐减小学习速率。

缺点:由于每一步都要使用所有数据,因此随着数据集的增大,运行速度会越来越慢.

(2)随机梯度下降 SGD

随机梯度下降方法一次只抽取一个随机样本进行目标函数梯度计算。

优点:由于每次只计算一个样本,所以SGD收敛非常快。

缺点:因为是随机抽取样本,因此误差是不可避免的,且每次迭代的梯度受抽样的影响比较大。

(3)小批量梯度下降 mini-batch GD

小批量梯度下降结合了批量梯度下降和随机梯度下降的优点,它一次以小批量的训练数据计算目标函数的权重并更新参数。

🌍梯度下降法的问题

        1. 难以选择合适的学习速率:如果学习速率选择过小会造成网络收敛太慢,但是设得太大可能使得损失函数在最小点周围不断摇摆而永远达不到最小点;

        2.如果训练数据十分稀疏并且不同特征的变化频率差别很大,这时候对变化频率慢得特征采用大的学习率,而对变化频率快的特征采用小的学习率是更好的选择;

3.3 梯度下降改进

(1)Momentum

        若当前的梯度方向与累积的历史梯度方向一致,则当前的梯度会被加强,从而这一步下降的幅度更大。若当前的梯度方向与累积的梯度方向不一致,则会减弱当前下降的梯度幅度。

(2)AdaGrad(Adaptive Gradient)

        每一次更新参数时(一次迭代),不同的参数使用不同的学习率。

(3)Adam( Adaptive Moment Estimation)

        Adam利用梯度的一阶矩估计和二阶矩估计动态调整每个参数的学习率。其优点主要在于经过偏置校正后,每一次迭代学习率都有个确定范围,使得参数比较平稳。

4.损失函数

1.平均绝对误差:平均绝对误差MAE(Mean Absolute Error)又被称为l1范数损失(l1-norm loss)

2.平均平方误差:平均平方误差MSE(Mean Squared Error)又被称为l2范数损失(l2-norm loss):

3.均方根差RMSE:是MSE的算术平方根

5.线性回归的改进

5.1 过拟合

过拟合是指模型学习的参数过多,导致拟合的函数完美的预测训练集,但对新数据的测试集预测结果差。

解决办法:

(1)获取更多的数据

(2)数据增强(Data Augmentation)

        通过一定规则扩充数据。

(3)使用合适的模型:

        减少网络的层数、神经元个数等均可以限制网络的拟合能力;

(4)使用正则项约束模型的权重,降低模型的非线性。

6.项目实战

6.1 波士顿房价

   以Scikit-learn的内置数据集波士顿(Boston)房屋价格为案例,采用单变量线性回归算法对数据进行拟合与预测。
   波士顿房屋的数据于1978年开始统计,共506个数据点,涵盖了波士顿不同郊区房屋的14种特征信息。
   在这里,选取房屋价格(MEDV)、每个房屋的房间数量(RM)两个变量进行回归,其中房屋价格为目标变量,每个房屋的房间数量为特征变量。将数据导入进来,并进行初步分析。

机器学习基本步骤:

数据预处理→特征工程→数据建模→结果评估

详情见:机器学习实践-CSDN博客


🐳自我总结:

项目实践的一般流程是:准备数据→配置网络→训练网络→模型评估→模型预测

配置网络包括:定义网络、定义损失函数、定义优化算法

训练网络:

1.  网络正向传播计算网络输出和损失函数。

2.  根据损失函数进行反向误差传播,将网络误差从输出层依次向前传递, 并更新网络中的参数。

3.  重复1~2步骤,直至网络训练误差达到规定的程度或训练轮次达到设定值。


💬一起加油!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/325375.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用 Kafka 和 CDC 将数据从 MongoDB Atlas 流式传输到 SingleStore Kai

SingleStore 提供了变更数据捕获 (CDC) 解决方案,可将数据从 MongoDB 流式传输到 SingleStore Kai。在本文中,我们将了解如何将 Apache Kafka 代理连接到 MongoDB Atlas,然后使用 CDC 解决方案将数据从 MongoDB Atlas 流式传输到 SingleStore…

第11章 GUI Page462~476 步骤二十三 步骤二十四 Undo/Redo ②“添加操作”支持“Undo/Redo”

工程二 1.为AddAction类添加Undo() Redo() GetName()成员函数 2.实现AddAction类的Undo() Redo()函数 3.运行效果,但是日志窗口没有记录 原因:AddAction(EditAction* newAction)函数没有实现,另外参数是EditAction类型 所以我们还需要在基…

【源码预备】Calcite基础知识与概念:关系代数概念、查询优化、sql关键字执行顺序以及calcite基础概念

文章目录 一. 关系代数的基本知识二. 查询优化三. SQL语句的解析顺序1. FROM2. WHERE3. GROUP BY4. HAVING5. SELECT 四. Apache Calcite中的基本概念1. Adapter2. Calcite中的关系表达式2.1. 关系表达式例子2.2. 源码底层结构 3. Calcite的优化规则4. Calcite的Trait--算子物理…

初识大数据,一文掌握大数据必备知识文集(12)

🏆作者简介,普修罗双战士,一直追求不断学习和成长,在技术的道路上持续探索和实践。 🏆多年互联网行业从业经验,历任核心研发工程师,项目技术负责人。 🎉欢迎 👍点赞✍评论…

C++上位软件通过Snap7开源库访问西门子S7-1200/S7-1500数据块的方法

前言 本人一直从事C上位软件开发工作较多,在之前的项目中通过C访问西门子PLC S7-200/S7-1200/S7-1500并进行数据交互的应用中一直使用的是ModbusTCP/ModbusRTU协议进行。Modbus上位开源库采用的LibModbus。经过实际应用发现Modbus开源库单次发送和接受的数据不能超过…

web3d-three.js场景设计器-TransformControls模型控制器

场景设计器-TransformControls 控制器 该控制器可以指定模型进入可控制模式-如图有三种控制方式 translate --移动模式 rotate -- 旋转模式 scale -- 缩放模式 方便布局过程中快捷对模型进行摆放操作。 引入方式 import { TransformControls } from three/examples/jsm/…

数据结构之哈希——学习笔记

今天看网课学习了哈希的数据结构,写下这一篇博客记录自己的学习过程。 1.哈希简介: 我们发现某些时候映射到小集合的时候会同时有多个值映射到一个下标里面,所以接下来是这种情况的解决方案1: 我们考虑当两个数字映射之后的结果…

提升网络安全重要要素IP地址

在数字化时代,网络安全已经成为人们关注的焦点。本文将深入探讨网络安全与IP地址之间的紧密联系,以及IP地址在构建数字世界的前沿堡垒中的关键作用。 网络安全是当今数字社会中不可忽视的挑战之一。而IP地址,作为互联网通信的基础协议&#…

视频融合云平台/智慧监控平台EassyCVR告警警告出错是什么原因?该如何解决?

视频集中存储/云存储/视频监控管理平台EasyCVR能在复杂的网络环境中,将分散的各类视频资源进行统一汇聚、整合、集中管理,实现视频资源的鉴权管理、按需调阅、全网分发、智能分析等。AI智能/大数据视频分析EasyCVR平台已经广泛应用在工地、工厂、园区、楼…

Graceful Response 构建 Spring Boot 下优雅的响应处理

一、Graceful Response Graceful Response 是一个 Spring Boot 技术栈下的优雅响应处理器,提供一站式统一返回值封装、全局异常处理、自定义异常错误码等功能,使用Graceful Response进行web接口开发不仅可以节省大量的时间,还可以提高代码质…

计算机网络期末知识汇总

一、计算机网络概述 1.Internet 的中文译名并不统一。 现有的 Internet 译名有两种: 因特网,这个译名是全国科学技术名词审定委员会推荐的,但却长期未得 到推广; 互联网,这是目前流行最广的、事实上的标准译名。现…

Spark MLlib简介与机器学习流程

在大数据领域,机器学习是一个关键的应用领域,可以用于从海量数据中提取有价值的信息和模式。Apache Spark MLlib是一个强大的机器学习库,可以在分布式大数据处理环境中进行机器学习任务。本文将深入介绍Spark MLlib的基本概念、机器学习流程以…