3D人体姿态估计(教程+代码)

3D人体姿态估计是指通过计算机视觉和深度学习技术,从图像或视频中推断出人体的三维姿态信息。它是计算机视觉领域的一个重要研究方向,具有广泛的应用潜力,如人机交互、运动分析、虚拟现实、增强现实等。
在这里插入图片描述

传统的2D人体姿态估计方法主要关注通过二维图像进行姿态推断,即从图像中提取人体关键点位置信息,然后根据这些关键点的空间关系推断出人体的姿态。然而,由于2D图像投影存在深度信息的缺失和模糊,2D姿态估计往往无法准确捕捉到人体的三维信息。

算法介绍

为了解决这个问题,研究者们开始探索使用深度学习技术进行3D人体姿态估计。深度学习技术能够学习到更高层次的特征表示,从而提高姿态估计的准确性。下面将对3D人体姿态估计的方法和技术进行简述。

  1. 单视角方法
    单视角方法是最常见的3D人体姿态估计方法之一。它通过从单个摄像机视角捕捉的图像中推断出人体的三维姿态。这种方法通常分为两个步骤:2D姿态估计和3D重建。
    在这里插入图片描述
代码获取、作业帮助、论文辅导:qq1309399183

在2D姿态估计阶段,深度学习模型被用于从输入图像中检测和定位人体关键点。这些关键点可以是人体的关节位置或特定身体部位的标记点。通过预测这些关键点的位置,可以得到人体在图像中的二维姿态信息。

然后,在3D重建阶段,使用将二维姿态信息与其他信息(如深度图像、摄像机参数等)结合起来,通过一些几何变换方法,将二维姿态信息转换为三维姿态信息。这些几何变换方法可以是透视投影、三角测量等。最终,通过这些步骤,我们可以得到人体的三维姿态。
在这里插入图片描述

  1. 多视角方法
    多视角方法利用从多个不同视角或摄像机捕捉的图像进行3D人体姿态估计。这种方法可以通过利用多个视角的互补信息来提高姿态估计的准确性。

在多视角方法中,首先通过单视角方法对每个摄像机视角的图像进行2D姿态估计。然后,通过使用多个视角的2D姿态信息,结合摄像机参数和几何约束,将2D姿态信息转换为3D姿态信息。

多视角方法的主要优势在于能够提供更多的观察角度和更多的几何信息,从而提高了姿态估计的准确性和稳定性。但同时,它也增加了系统的复杂性,需要进行多个视角的图像对齐和标定等步骤。

  1. 基于深度学习的方法
    近年来,基于深度学习的方法在3D人体姿态估计领域取得了显著的进展。这些方法利用深度学习模型对大规模数据集进行训练,从而学习到人体姿态的特征表示和模式。

基于深度学习的方法通常采用端到端的训练策略,即将输入图像作为模型的输入,直接输出人体的三维姿态。这种方法可以避免传统方法中的多个阶段处理,并且能够通过大规模数据集的训练来提高姿态估计的准确性。

基于深度学习的方法通常采用卷积神经网络(CNN)或循环神经网络(RNN)等深度学习模型进行姿态估计。这些模型通常使用3D姿态标注数据进行训练,以学习从图像到姿态的映射关系。

  1. 结合传感器的方法
    除了使用图像或视频作为输入,还可以结合其他传感器,如深度摄像机(如Microsoft Kinect)或惯性测量单元(IMU),来提高3D人体姿态估计的准确性和鲁棒性。

模型效果

在这里插入图片描述

深度摄像机可以提供人体的深度信息,从而帮助更准确地估计三维姿态。IMU可以提供人体的运动信息,从而帮助解决动态姿态估计的问题。

代码介绍

import torch
from torch.utils.data import DataLoader
from torchvision.transforms import Normalizefrom openpose import OpenPoseModel, OpenPoseDataset# 设置设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")# 模型路径和参数
model_path = "path_to_pretrained_model.pth"
input_size = (256, 256)
output_size = (64, 64)
num_joints = 17# 加载模型
model = OpenPoseModel(num_joints=num_joints, num_stages=4, num_blocks=[1, 1, 1, 1]).to(device)
model.load_state_dict(torch.load(model_path))
model.eval()# 数据集路径
dataset_path = "path_to_dataset"# 数据预处理
normalize = Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])# 加载数据集
dataset = OpenPoseDataset(dataset_path, input_size, output_size, normalize=normalize)
dataloader = DataLoader(dataset, batch_size=8, shuffle=True, num_workers=4)# 测试模型
total_loss = 0
total_samples = 0with torch.no_grad():for i, (images, targets) in enumerate(dataloader):images = images.to(device)targets = targets.to(device)# 前向传播outputs = model(images)# 计算损失loss = torch.mean((outputs - targets) ** 2)total_loss += loss.item() * images.size(0)total_samples += images.size(0)average_loss = total_loss / total_samplesprint("Average Loss: {:.4f}".format(average_loss))

结合传感器的方法通常需要进行传感器的标定和数据融合等步骤,以将不同传感器的信息相结合。这些方法可以提供更多的信息来源,从而提高姿态估计的准确性和鲁棒性。

总结

代码获取、作业帮助、论文辅导:qq1309399183
  • 总结起来,3D人体姿态估计是通过计算机视觉和深度学习技术从图像或视频中推断出人体的三维姿态信息。
  • 它可以通过单视角方法、多视角方法、基于深度学习的方法和结合传感器的方法来实现。
  • 随着深度学习技术的不断发展和硬件设备的提升,3D人体姿态估计将在很多领域中得到广泛应用,为人机交互、运动分析、虚拟现实等领域带来更多可能性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/327278.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

OpenHarmony应用构建工具Hvigor的构建流程

前言 OpenHarmony 应用和服务使用 Hvigor 作为工程的构建工具。本篇文章将介绍 Hvigor 的构建流程,通过修改脚本配置使 Hvigor 执行自定义任务。 Hvigor 的构建流程 加载命令行参数和环境变量;初始化项目结构,创建 Project 和 Module 实例…

深度解析分布式算法:构建高效稳定的分布式系统

😄 19年之后由于某些原因断更了三年,23年重新扬帆起航,推出更多优质博文,希望大家多多支持~ 🌷 古之立大事者,不惟有超世之才,亦必有坚忍不拔之志 🎐 个人CSND主页——Mi…

YOLOv5改进 | 卷积篇 | SAConv轻量化的可切换空洞卷积(附修改后的C3+Bottleneck)

一、本文介绍 本文给大家带来的改进机制是可切换的空洞卷积(Switchable Atrous Convolution, SAC)是一种创新的卷积网络机制,专为增强物体检测和分割任务中的特征提取而设计。SAC的核心思想是在相同的输入特征上应用不同的空洞率进行卷积,并通过特别设计的开关函数来融合这…

在 docker 容器中配置双网卡,解决通讯的问题

目录 1. 查看当前网络信息 2. 创建自定义网络桥 3. 创建双网卡模式 4. 删除默认网卡 已经创建好了的 Docker 容器,要修改它的IP比较麻烦,网上找了几种不同的方法,经过试验都没有成功,下面通过配置双网上来解决 IP 的问题。…

vue-video-player接入海康摄像头

需求 最近需要接入海康视频摄像头,然后把视频的画面接入到自己的网站系统中。以前对接过rtsp固定IP的显示视频,这次的不一样,没有了固定IP。海康的解决办法是,摄像头通过配置服务器到萤石云平台,然后购买企业版账号和…

CodeWave智能开发平台--03--目标:应用创建--06变量作用域和前后端服务逻辑

摘要 本文是网易数帆CodeWave智能开发平台系列的第08篇,主要介绍了基于CodeWave平台文档的新手入门进行学习,实现一个完整的应用,本文主要完成06变量作用域和前后端服务逻辑 CodeWave智能开发平台的08次接触 CodeWave参考资源 网易数帆Co…

SpringBoot 如何 返回页面

背景 RestController ResponseBody Controller Controller中的方法无法返回jsp页面,或者html,配置的视图解析器 InternalResourceViewResolver不起作用,返回的内容就是Return 里的内容。 Mapping ResponseBody 也会出现同样的问题。 解…

科锐16位汇编学习笔记 04 乘除和移位指令

乘法和除法指令用的不多,因为效率很低 比较指令CMP (compare) •格式:CMP OPD,OPS •功能:(OPD) — (OPS),跟减法指令很像,但是不存结果 •说明:目的操作数减去源操作数,然后根据结果设置标志位,但该结…

python数据可视化之折线图案例讲解

学习完python基础知识点,终于来到了新的模块——数据可视化。 我理解的数据可视化是对大量的数据进行分析以更直观的形式展现出来。 今天我们用python数据可视化来实现一个2023年三大购物平台销售额比重的折线图。 准备工作:我们需要下载用于生成图表的第…

沉浸式学习外语:在电视上播放世界名著中英双语对照音频

目前学习英语的app及软件层出不穷,但家长一是担心孩子长时间看手机或电脑,眼睛受不了,二是担心孩子一旦拿者手机或电脑没人看管,就会玩游戏。实际上还有一个更好的设备可用于学习,就是电视机。电视机屏幕大&#xff0c…

腾讯云2核2G3M服务器可以运行几个网站?

在探讨这个问题之前,我们需要先了解网站运行所需的基本资源。一个网站的运行通常需要以下几个方面的资源:CPU、内存、磁盘和网络。接下来,我们将分析这些资源在不同配置下的使用情况,以确定腾讯云2核2G3M服务器可以运行多少个网站…

AI数字人国内人工智能产业发展趋势

随着科技的不断进步,人工智能(Artificial Intelligence,简称AI)已成为当今社会的热门话题。作为一种复杂而高级的技术,人工智能在国内发展势头迅猛。本文将探讨AI数字人国内人工智能产业的发展趋势。 首先&#xff0c…