实时语义分割模型PP-LiteSeg论文解读

paper:PP-LiteSeg: A Superior Real-Time Semantic Segmentation Model

official implementation:https://github.com/PaddlePaddle/PaddleSeg/blob/release/2.8/paddleseg/models/pp_liteseg.py

本文的创新点 

  • 提出了一种灵活的轻量级解码器(Flexible and Lightweight Decoder, FLD),减轻了解码器的冗余性,平衡了encoder和decoder的计算成本。
  • 提出了一个新的注意力融合模块(Unified Attention Fusion Module, UAFM),利用空间和通道注意力来加强特征表示。
  • 提出了Simple Pyramid Pooling Module(SPPM)来聚合全局上下文。

方法介绍

Flexible and Lightweight Decoder

encoder-decoder结构是常用的语义分割结构,一般来说,encoder通过分组为几个stage的若干卷积层来提取层级特征,从低层到高层,特征通道数逐渐增加,空间尺寸逐渐减小,这种设计平衡了各阶段的计算成本,保证了encoder的效率。decoder也分为几个stage,负责融合和上采样。尽管从高层到低层,特征的空间尺寸逐渐增加,但在最近的轻量模型中,decoder中的通道数保持不变。因此低层的计算成本远大于高层,为了提高decoder的效率,本文提出了一种灵活的轻量解码器FLD,如图3所示,从high-level到low-level,FLD逐渐减少通道数量,FLD可以很容易的调整计算成本实现编码器和解码器之间的平衡。

Unified Attention Fusion Module

融合多尺度特征是实现高精度分割的关键,本文提出了一个新的注意力融合模块(Unified Attention Fusion Module, UAFM),它应用通道和空间注意力来丰富融合特征的表示。

UFAM framework

如图4(a)所示,UFAM利用一个注意力模块得到权重 \(\alpha\),并通过Mul和Add操作用权重 \(\alpha\) 融合输入特征。具体而言,输入特征表示为 \(F_{high}\) 和 \(F_{low}\),\(F_{high}\) 是深层模块的输出,\(F_{low}\) 是encoder中的对应输出,它们通道数相同。UFAM首先通过双线性插值上采样 \(F_{high}\) 和 \(F_{low}\) 相同尺度大小得到 \(F_{up}\)。然后注意力模块以 \(F_{up}\) 和 \(F_{low}\) 作为输入得到权重 \(\alpha\),这里注意力模块是一个plugin,可以是通道注意力模块、空间注意力模块等。然后分别对 \(F_{up}\) 和 \(F_{low}\) 进行element-wise Mul操作最后两者进行element-wise Add得到最终输出。如下

Spatial Attention Module

空间注意力模块利用inter-spatial关系得到一个权重,它表示的是输入特征中每个像素位置的重要性。如图4(b)所示,给定输入 \(F_{up}\in R^{C\times H\times W}\) 和 \(F_{low}\in R^{C\times H\times W}\),首先沿通道维度计算mean、max得到四个维度 \(R^{1\times H\times W}\) 的特征,然后拼接得到 \(F_{cat}\in R^{4\times H\times W}\),然后接一层卷积和sigmoid得到权重 \(\alpha\in R^{1\times H\times W}\)。具体如式2,这里具体的实现方式是灵活的,比如可以去掉max操作来降低计算成本。

Channel Attention Module

通道注意力模块的关键是利用inter-channel关系得到一个权重,它表示的是输入特征中每个通道的重要性。如图4(c)所示,首先利用average-pooling和max-pooling得到四个维度为 \(R^{C\times 1\times 1}\) 的输出,然后沿通道拼接并接一层卷积和sigmoid得到权重 \(\alpha \in R^{C\times 1\times 1}\),具体过程如下

Simple Pyramid Pooling Module

如图5所示,本文提出的SPPM,它首先利用金字塔池化模块来融合输入特征,其中包含三个average pooling,bin size分别为1x1、2x2、4x4。然后分别进行卷积和上采样,卷积大小为1x1,输出通道数小于输入通道,最后将三个特征相加再接一层卷积得到输出特征。和原始的PPM相比,SPPM减少了中间和输出的通道数,去掉了short-cut,将concatenate替换为add,因此SPPM更高效也更适合实时模型。 

实验结果

PP-LiteSeg和其它sota模型在Cityscapes数据集上的结果比较如下

在CamVid测试集上的结果对比如下

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/327870.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

鸿蒙开发学习——容器组件介绍

文章目录 引言正文容器组件基础学习容器的主轴和交叉轴容器的属性 总结 引言 在完成自己的应用过程中,发现自己需要调整登录界面的布局,但是并不是很清楚如何调整,所以需要了解一下登录界面是如何调整元素的。通过学习发现,登录界…

用友NC word.docx 任意文件读取漏洞复现

0x01 产品简介 用友NC是一款企业级ERP软件。作为一种信息化管理工具,用友NC提供了一系列业务管理模块,包括财务会计、采购管理、销售管理、物料管理、生产计划和人力资源管理等,帮助企业实现数字化转型和高效管理。 0x02 漏洞概述 用友NC 系统word.docx等接口存在任意文件…

jenkins安装报错:No such plugin: cloudbees-folder

jenkins安装报错:No such plugin: cloudbees-folder 原因是缺少cloudbees-folder.hpi插件 解决: 一,重新启动 http://xxx:8800/restart 二,跳到重启界面时,点击系统设置 三,找到安装插件,然…

单机部署Rancher

上次已经安装完毕了k8s了,但是想要界面化的管理,离不开界面工具,首推就是rancher,本文介绍安装rancher的安装,也可以将之前安装的k8s管理起来。 已经安装完毕docker和docker-ce的可以直接从第三部分开始。 一、基础准…

主浏览器优化之路2——Edge浏览器的卸载与旧版本的重新安装

Edge浏览器的卸载与旧版本的重新安装 引言开整寻找最年轻的她开始卸载原本的Edge工具下载后新版本的安装 结尾 引言 (这个前奏有点长,但是其中有一些我的思考顿悟与标题的由来,望耐心) 我在思考这个系列的时候 最让我陷入困得是…

【动态规划】【 矩阵】【逆向思考】C++算法174地下城游戏

作者推荐 【动态规划】【字符串】扰乱字符串 本文涉及的基础知识点 动态规划 矩阵 逆向思考 LeetCode174地下城游戏 恶魔们抓住了公主并将她关在了地下城 dungeon 的 右下角 。地下城是由 m x n 个房间组成的二维网格。我们英勇的骑士最初被安置在 左上角 的房间里&#x…

文章解读与仿真程序复现思路——中国电机工程学报EI\CSCD\北大核心《考虑系统调峰需求与光热电站收益平衡的储热容量优化配置》

本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主的专栏栏目《论文与完整程序》 这个标题表明研究的主题涉及到光热电站系统中的储热容量优化配置,而优化的目标是在系统中实现调峰需求并平衡光热电站的收益。让我们逐步解读这…

leetcode 每日一题 2023年12月30日 一周中的第几天

题目 给你一个日期,请你设计一个算法来判断它是对应一周中的哪一天。 输入为三个整数:day、month 和 year,分别表示日、月、年。 您返回的结果必须是这几个值中的一个 {"Sunday", "Monday", "Tuesday", &qu…

【数值分析】非线性方程求根,牛顿法,牛顿下山法,matlab实现

4. 牛顿法 收敛时牛顿法的收敛速度是二阶的,不低于二阶。如果函数有重根,牛顿法一般不是二阶收敛的。 x k 1 x k − f ( x k ) f ′ ( x k ) x_{k1}x_k- \frac{f(x_k)}{f(x_k)} xk1​xk​−f′(xk​)f(xk​)​ matlab实现 %% 牛顿迭代例子 f (x) x…

wsl相关

wsl安装 官网参考 打开powershell,运行:wsl --install 配置本地clash for windows proxy.sh #!/bin/sh hostip$(cat /etc/resolv.conf | grep nameserver | awk { print $2 }) wslip$(hostname -I | awk {print $1}) port7890PROXY_HTTP"http:/…

差分电路原理以及为什么输出电压要偏移

我们在使用放大器芯片的时候,除了对放大器芯片本身应用外,通常还需要搭建一些外围电路来满足放大器芯片的使用条件,最终满足应用的功能,下面通过一个差分电路来熟悉这些应用。 差分运算放大电路,对共模信号得到有效抑…

@Async正确使用姿势

Async注解可以使被修饰的方法成为异步方法,简单且方便,这篇文章将教你如何正确的使用它 先谈谈大多数人对Aysnc的认识: 如果直接使用Async,未指定线程池 并且 容器内也没有beanName为taskExecutor的bean,则会使…