R语言多元数据统计分析在生态环境中的实践应用

生态环境领域研究中常常面对众多的不同类型的数据或变量,当要同时分析多个因变量(y)时需要用到多元统计分析(multivariate statistical analysis)。多元统计分析内容丰富,应用广泛,是非常重要和实用的多元数据分析方法和统计工具,其中分类(classification)/分组(grouping)和梯度(gradient)/排序(ordination)分析是多元统计分析的核心内容。分类/分组分析主要包括聚类(如层次聚类和k-means聚类等)和差异分析(如辨别分析和mental检验等);梯度/排序分析分为非约束排序(如PCA和CA等)和约束排序(如RDA和CCA等)两大类

您是否在应用多元统计分析方法时往往非常困惑,无从下手???

比如,多元统计方法众多,分类还是排序?约束排序还是非约束排序?哪种方法或技术更适合我的研究目的或数据?其次,在多元分析中很多术语都有别称,如非约束排序也叫间接梯度分析;再次,多元数据类型包括连续型数据、计数数据、分类数据及混合类型数据,不同数据类型如何选择合适的方法?等等等等

将梳理多元统计中分类/分组和排序/梯度分析各方法不同应用情境,通过具体案例,利用R语言相关包示范各种方法实现途径,使大家面对多元数据分析时能够驾轻就熟,从容面对。

生态环境多元数据分析概述 (Working with multivariate data)

1、多元统计方法概念定义

2、纷繁的多元统计方法应用情景、异同点

3、多元统计方法数据或变量类型和结构

 

R和Rstudio简介及入门和作图基础

R及Rstudio介绍:背景、软件及程序包安装、基本设置等

2) R语言基本操作,包括向量、矩阵、数据框及数据列表等生成和数据提取等

3) R语言数据文件读取、整理(清洗)、结果存储等(含tidverse)

4) R语言基础绘图(含ggplot):基本绘图、排版、发表质量绘图输出存储

 

 群落数据准备及探索分析

 生物群落数据准备:物种组成、环境变量、物种功能属性、系统发育树等

2) 生物群落数据检查:缺失值和离群值(outliers)等-避免模型错进错出(GIGO)

3) 物种多样性计算:物种多样性(TD)、功能多样性(FD)和系统发育多样性(PD)

4) 物种相似/相异矩阵关联测度介绍

聚类(Cluster)分析上:非层次聚类(NHC) 

 1) 聚类及非层次聚类方法概述

2) 非层次聚类:K均值(K-means)聚类方法(kmeans;pam;clara)

3) 实例鸟类生境数据K均值聚类比较分析:聚类数确定、聚类稳定性、聚类结果评估、复合聚类值构建

 

聚类(Cluster)分析下:层次聚类(NHC) 

 层次聚类方法简介:多元聚合层次聚类(PAHC) VS 多元分化层次聚类(PDHC)

2)层次聚类方法(hcluster和agnes)分类结果比较分析:碎石图、轮廓宽度、同表型相关图等

3) 案例1鸟类生境数据的层次聚类分析;案例2鱼类生境数据的层次聚类分析

 

辨别(Discrimination)分析上:分组差异性检验(Group Difference Test) 

1) 多元群落数据分组差异分析及检验简介

2)(非参数)多元方差分析(NP-MANOVA/ADONIS/PERMANOVA)、多元置换过程(MRPP)、多元相似分析(ANOSIM)、Mantel检验(MANTEL)在多元数据差异性检验的应用

3)多元差异性检验多组数据比较实现方法:MRPP、Mantel

4)Mental方法在群落生态学‘标准’应用:空间取样距离、环境因子及物种组成关系及其偏Mental分析

5) 案例1乌龟适生生境差异性检验;案例2微生物组成数据差异分析;案例3鱼类群落、空间距离及环境因子相互关析分析

 

辨别(Discrimination)分析中:线性辨别分析(LDA) 

1) 辨别分析(DA)的多面性

2) 线性辨别(LDA)分析基本原理及流程:数据检查、评估假设、样本数量、变量选择、模型确定、结果解读及模型验证

3)其他辨别分析方法介绍(QDA,KNN等)

4) 案例乌龟适生生境辨别及预测

 

辨别(Discrimination)分析下:分类回归树(CART)及随机森林模型(RFM) 

生物群落数据的分类回归树简介

2) 分类回归树分析(CART)实现:分化准则、节点杂度、gini指数、先验概率效应、误分类代价、分类树裁剪、Monte Carlo检验、变量重要性评估、模型预测等

3) 随机森林模型(RFM)实现:算法流程、模型评估、变量重要性评估及模型分类与回归等

4) 案例1基于分类回归树的乌龟群落生境划分及预测

5)案例2基于随机森林模型的根际微生物群落与植物生长关系及变量重要性评估

间接梯度分析-非约束排序(Unconstrained ordination)上:PCA 

 

生物群落数据的非约束排序简介

2) 主成分分析(PCA)的基本原理:假设条件、数据要求等

3)案例:鱼类生境数据的PCA排序分析实现-数据准备、检查(离群值、多元正态性、线性关系、样本独立性等)、结果验证、排序轴选择(特征根准则、累计解释率、随机断棍准则等)、结果解读、双序图等

 

间接梯度分析-非约束排序(Unconstrained ordination)下:PCoA、CA、DCA 及NMDS 

其他非约束方法介绍及应用情景: CA、DCA 、PCOA及NMDS

2) 案例1鸟类群落组成数据的对应分析(CA)及去趋势对应分析(DCA):数据准备、假设条件、总惯量、特征根、排序轴选择、结果解读、偶见种效应/弓形效应等

3) 案例2 基于距离/相似度指数或矩阵的主坐标排序(PCoA):距离/相似度指数选择、模型假设、负特征根问题、结果解读、排序图等

4) 案例3 NMDS排序方法应用:假设条件、基本分析流程、排序效果评估(应力值)、排序图等

5)案例4 药物对肠道微生物群落影响:PCoA+PERMANOVA

6)案例5 基于随机森林模型的蚂蚁多维属性特征预测:RF+PCA+PCoA+PERMANOVA

 

直接梯度分析-约束排序(Constrained ordination)上:RDA 

1) 生物群落数据的约束排序简介:非对称约束排序 VS 对称约束排序

2)生物群落数据非对称约束排序的基本流程:响应变量/物种选择(矩阵Y)、响应变量数据预处理(转换或标准化)、分析方法选择(RDA/db-RDA/CCA)、解释变量/约束变量选择(矩阵X)及分析和结果解读、评估及展示

3) 案例景观、斑块及立地条件对森林景观中蛾类群落物种组成的影响

 

直接梯度分析-约束排序(Constrained ordination)中:dbRDA、CCA及对称约束排序方法 

案例1:基于距离矩阵的冗余分析(dbRDA):物种组成数据及0,1数据分析

2)案例2:群落物种多度数据的典范对应分析(CCA):单峰型环境梯度分析方法

3)案例3:对称约束排序方法介绍及物种组成、物种属性及环境变量相关关系第四角分析

 

直接梯度分析-约束排序(Constrained ordination)下:变差分解(Variance Partitioning) 

群落数据多元统计分析变差分解简介

2) 偏回归分析与变差分解

3) 案例景观、斑块及立地条件及空间因素对森林景观蛾类群落物种组成变异的变差分解

 

统计结果作图ggplot (Plotting the results)

  1. 群落数据及统计分析结果作图数据准备:结果提取、整理
  2. PCA、CA、PCoA及NMDS等非约束排序图:排序图和双序图(biplot)
  3. PCoA+PERMANOVA结果图:排序图+分组+PERMANOVA差异显著性+多重比较
  4. RDA、db-RDA及CCA等约束排序图:三序图(triplot)和韦恩图(venn)

 

●R语言贝叶斯方法在生态环境领域中的高阶技术应用
●R语言生物群落(生态)数据统计分析与绘图实践技术应用

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/3325.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SQL开源替代品,诞生了

发明 SQL 的初衷之一显然是为了降低人们实施数据查询计算的难度。SQL 中用了不少类英语的词汇和语法,这是希望非技术人员也能掌握。确实,简单的 SQL 可以当作英语阅读,即使没有程序设计经验的人也能运用。 然而,面对稍稍复杂的查…

【架构治理工具】在代码存储库中记录软件架构

Markdown 是一种标准的简单语法,用于创建具有专业外观的文档。它比 HTML 更简单,无需专门的编写编辑器即可进行管理。Git配置管理工具也支持markdown格式。在 Git 环境中,markdown 一般用于项目的简单介绍和构建说明。(自述文件&a…

Vue 项目中使用WebSocket 消息推送

一、功能需求 1.这是我在后台管理项目中使用到的,主要的作用是搞一个消息提醒的功能。 2.主要有右上角的提示和有下角的消息弹框。 3.主要实现的功能是如果用户有未读的消息,那么首次登录就弹框,如果用户关闭了页面,那么再次刷新…

valgrind检测内存泄漏、越界访问、野指针访问实验

前言 本次测试包括&#xff0c;检测无误的代码&#xff0c;检测内存泄漏&#xff0c;检测访问越界&#xff0c;检测野指针&#xff0c;检测访问已经释放(已经被free)的内存。 一 安装valgrind sudo apt install valgrind 二 无错误 #include <stdio.h> #include <…

GitHub+PicGo制作个人图床

目录 一、前言 二、新建Github仓库 ​编辑 三、生成token 四、配置PicGo 五、上传图片 六、新版的PicGo出了很多新功能大家可以探索一下。​编辑 一、前言 PicGo是一个用于快速上传图片并获取图片 URL 链接的工具:Releases Molunerfinn/PicGo GitHub GitHub是一个在…

pytorch动态调整学习率torch.optim.lr_scheduler import MultiStepLR

from torch.optim.lr_scheduler import MultiStepLR 简单来说&#xff0c;就是分阶段调整学习率&#xff0e; 用法&#xff1a; model ANet(classes5) #加载模型 optimizer optim.SGD(params model.parameters(), lr0.05) #优化方法使用SGD#在指定的epoch值&#x…

“因构建 而可见”,亚马逊云科技中国峰会助力企业数字化转型升级

过去十年&#xff0c;数字化转型的浪潮携带着机遇和挑战席卷而来&#xff0c;几乎每个企业都在做数字化转型&#xff0c;开始向大数据、人工智能等新技术寻求生产力的突破。但随着数字化转型深入&#xff0c;很多企业开始感受到数字化投入的成本压力&#xff0c;加之新技术正带…

使用npm install -g @vue/cli 命令安装最新的脚手架与Vue版本不匹配的问题

使用npm install -g vue/cli 命令安装最新的脚手架 创建项目时不要选择Vue版本&#xff0c;让它默认选择&#xff08;默认选择 Vue2&#xff09;否则会出现 vue版本和脚手架版本vue-cli 不兼容的问题&#xff08;怪哉&#xff09; 脚手架兼容vue2 不兼容vue3 &#xff1f; 不理…

DAY34——贪心part3

1. class Solution {public int largestSumAfterKNegations(int[] nums, int K) {// 将数组按照绝对值大小从大到小排序&#xff0c;注意要按照绝对值的大小nums IntStream.of(nums).boxed().sorted((o1, o2) -> Math.abs(o2) - Math.abs(o1)).mapToInt(Integer::intValue)…

机器学习——概率与统计

参考资料&#xff1a; 《机器学习》周志华https://zhuanlan.zhihu.com/p/27056207 1 马尔可夫链 1.1 定义 直观含义&#xff1a;在已知现在的条件下&#xff0c;过去与未来相互独立。 1.2 马尔可夫模型 根据定义&#xff0c;A 必为方阵 其中&#xff0c; p i j ( n ) P {…

MaskFormer:将语义分割和实例分割作为同一任务进行训练

目标检测和实例分割是计算机视觉的基本任务&#xff0c;在从自动驾驶到医学成像的无数应用中发挥着关键作用。目标检测的传统方法中通常利用边界框技术进行对象定位&#xff0c;然后利用逐像素分类为这些本地化实例分配类。但是当处理同一类的重叠对象时&#xff0c;或者在每个…

信号链噪声分析11

文章目录 概要整体架构流程技术名词解释技术细节小结 概要 提示&#xff1a;这里可以添加技术概要 如今的射频(RF)系统变得越来越复杂。高度的复杂性要求所有系统指标&#xff08;例如严格的 链接和噪声预算&#xff09;达到最佳性能。确保整个信号链的正确设计至关重要。而信…