Spark---RDD(Key-Value类型转换算子)

文章目录

  • 1.RDD Key-Value类型
      • 1.1 partitionBy
      • 1.2 reduceByKey
      • 1.3 groupByKey
          • reduceByKey和groupByKey的区别
          • 分区间和分区内
      • 1.4 aggregateByKey
          • 获取相同key的value的平均值
      • 1.5 foldByKey
      • 1.6 combineByKey
      • 1.7 sortByKey
      • 1.8 join
      • 1.9 leftOuterJoin
      • 1.10 cogroup

1.RDD Key-Value类型

Key-Value类型的算子即对键值对进行操作。

1.1 partitionBy

将数据按照指定的 Partitioner(分区器) 重新进行分区。Spark 默认的分区器为HashPartitioner,Spark除了默认的分区器外,常见的分区器还有:RangePartitioner、Custom Partitioner、SinglePartitioner等。

函数定义:
def partitionBy(partitioner: Partitioner): RDD[(K, V)]

	//使用HashPartitioner分区器并设置分区个数为2val data1: RDD[(Int, String)] = sparkRdd.makeRDD(Array((1, "aaa"), (2, "bbb"), (3, "ccc")), 3)data1.partitionBy(new HashPartitioner(2));data1.collect().foreach(println)

在这里插入图片描述

1.2 reduceByKey

可以将数据按照相同的 Key 对 Value 进行聚合

函数定义:
def reduceByKey(func: (V, V) => V): RDD[(K, V)]
def reduceByKey(func: (V, V) => V, numPartitions: Int): RDD[(K, V)]

	//将数据按照相同的key对value进行聚合val data1: RDD[(String, Int)] = sparkRdd.makeRDD(List(("a", 1), ("b", 2), ("c", 3),("a",4),("b",5)))val data2: RDD[(String, Int)] = data1.reduceByKey((x: Int, y: Int) => {x + y})data2.collect().foreach(println)

在这里插入图片描述

1.3 groupByKey

将数据源的数据根据 key 对 value 进行分组

函数定义:
def groupByKey(): RDD[(K, Iterable[V])]
def groupByKey(numPartitions: Int): RDD[(K, Iterable[V])]
def groupByKey(partitioner: Partitioner): RDD[(K, Iterable[V])]

    val dataRDD1 = sparkRdd.makeRDD(List(("a", 1), ("b", 2), ("c", 3),("a",4),("b",5)))val data1 = dataRDD1.groupByKey()//指定分区个数为2val data2 = dataRDD1.groupByKey(2)//指定分区器和分区个数val data3 = dataRDD1.groupByKey(new HashPartitioner(2))data1.collect().foreach(println)println("-------------------->")data2.collect().foreach(println)println("-------------------->")data3.collect().foreach(println)

在这里插入图片描述

reduceByKey和groupByKey的区别

从功能的角度来看:reduceByKey包含了分组和聚合功能,而groupByKey只包含了分组功能。
从shuffle的角度来看:为了避免占用过多的内存空间,reduceByKey和groupByKey在执行的过程中,都会执行shuffle操作,将数据打散写入到磁盘的临时文件中,而reduceByKey在进行shuffle前会对数据进行预聚合的操作,致使shuffle的效率得到的提升,因为减少了落盘的数据量。但是groupByKey在shuffle前不会进行预聚合操作。所以,reduceByKey在进行分组的时候,效率相对groupByKey来说较高。

reduceByKey:
在这里插入图片描述

groupByKey:

在这里插入图片描述

分区间和分区内

分区间: 顾名思义,分区间就是指的多个分区之间的操作。如reduceByKey在shuffle操作后将不同分区的数据传输在同一个分区中进行聚合。
分区内: 分区内字面意思指的是单个分区内之间的操作。如reduceByKey的预聚合功能就是在分区内完成

1.4 aggregateByKey

将数据根据不同的规则进行分区内计算和分区间计算,如reduceByKey中分区间和分区内都是聚合操作,而使用aggregateByKey可以设置分区间和分区内执行不同的操作。

函数定义:
def aggregateByKey[U: ClassTag](zeroValue: U)(seqOp: (U, V) => U,
combOp: (U, U) => U): RDD[(K, U)]

    //取出每个分区内相同 key 的最大值然后分区间相加// aggregateByKey 算子是函数柯里化,存在两个参数列表// 1. 第一个参数列表中的参数表示初始值// 2. 第二个参数列表中含有两个参数// 2.1 第一个参数表示分区内的计算规则// 2.2 第二个参数表示分区间的计算规则val data1 = sparkRdd.makeRDD(List(("a", 1), ("a", 2), ("a", 3), ("a", 4)),2)val data2 = data1.aggregateByKey(0)((x,y)=>{Math.max(x,y)},(x,y)=>{x+y})data2.collect().foreach(println)**

在这里插入图片描述
注意:最终的结果会受到设置的初始值的影响,返回结果的值的类型和初始值保持一致。

获取相同key的value的平均值
    val data1:RDD[(String,Int)] = sparkRdd.makeRDD(List(("a", 1), ("a", 2), ("b", 3), ("b", 4),("b",5),("a",6)),2)//设置初始值,初始值为一个元组,元组第一个元素表示value,第二个表示出现次数,初始默认都为0val data2:RDD[(String,(Int,Int))] = data1.aggregateByKey((0,0))((t, v)=> {(t._1 + v, t._2 + 1)} ,//分区内计算(t1, t2) => {(t1._1 + t2._1, t1._2 + t2._2)}//分区间计算)//和除以次数求出平均值val data3 = data2.mapValues({case (sum, count) => sum / count})data3.collect().foreach(println)

在这里插入图片描述

1.5 foldByKey

当分区内和分区间的计算规则相同的时候,aggregateByKey 就可以简化为 foldByKey

函数定义:
def foldByKey(zeroValue: V)(func: (V, V) => V): RDD[(K, V)]

    val dataRDD1 = sparkRdd.makeRDD(List(("a",1),("b",2),("a",3)))val dataRDD2 = dataRDD1.foldByKey(0)(_+_)dataRDD2.collect().foreach(println)

在这里插入图片描述

1.6 combineByKey

最通用的对 key-value 型 rdd 进行聚集操作的聚集函数(aggregation function)。类似于aggregate(),combineByKey()允许用户返回值的类型与输入不一致。

函数定义:

def combineByKey[C](
createCombiner: V => C,//对数据进行转换
mergeValue: (C, V) => C, //分区内合并
mergeCombiners: (C, C) => C): RDD[(K, C)] //分区间合并

//将数据 List(("a", 88), ("b", 95), ("a", 91), ("b", 93), ("a", 95), ("b", 98))求每个 key 的平均值
val rddSource: RDD[(String, Int)] = sparkRdd.makeRDD(List(("a", 88), ("b", 95), ("a", 91), ("b", 93), ("a", 95), ("b", 98)),2)
val combinRdd: RDD[(String, (Int, Int))] = rddSource.combineByKey(((x:Int)=>{(x,1)}),//对每个value进行转换,转换后为(value,1),第一个元素为值,第二个元素为出现的次数((t1:(Int,Int),v)=>{(t1._1+v,t1._2+1)}),//分区内合并((t1,t2)=>{(t1._1+t2._1,t1._2+t2._2)})//分区间合并
)//mapValues算子是在key保持不变的时候对value进行操作val mapRdd: RDD[(String, Int)] = combinRdd.mapValues({case ((sum: Int, count: Int)) => sum / count})mapRdd.collect().foreach(println)

在这里插入图片描述
由此看出,combineByKey和aggreateByKey的不同之处在于,combineByKey可以不设置初始值,只需要对第一个元素进行转换,转换到合适的计算格式即可。

1.7 sortByKey

在一个(K,V)的 RDD 上调用,K 必须实现 Ordered 接口(特质),返回一个按照 key 进行排序的

函数定义:

def sortByKey(ascending: Boolean = true, numPartitions: Int = self.partitions.length)
: RDD[(K, V)]

//升序排序val dataRDD1 = sparkRdd.makeRDD(List(("a",1),("b",2),("c",3)))val sortRdd: RDD[(String, Int)] = dataRDD1.sortByKey()sortRdd.collect().foreach(print)

在这里插入图片描述
sortByKey默认为升序排序,如果想要降序排序,只需要将sortByKey第一个参数修改为false即可。
在这里插入图片描述

1.8 join

在类型为(K,V)和(K,W)的 RDD 上调用,返回一个相同 key 对应的所有元素连接在一起的(K,(V,W))的 RDD

函数定义:

def join[W](other: RDD[(K, W)]): RDD[(K, (V, W))]

	//join操作相当于数据库中的内连接,在连接的时候自动去除两边的悬浮元组val rdd0: RDD[(Int, String)] = sparkRdd.makeRDD(Array((1, "a"), (2, "b"), (3, "c")))val rdd1: RDD[(Int, Int)] = sparkRdd.makeRDD(Array((1, 4), (2, 5), (3, 6)))rdd0.join(rdd1).collect().foreach(print)//修改rdd1,使其少了key=3的这个元素val rdd0: RDD[(Int, String)] = sparkRdd.makeRDD(Array((1, "a"), (2, "b"), (3, "c")))val rdd1: RDD[(Int, Int)] = sparkRdd.makeRDD(Array((1, 4), (2, 5)))rdd0.join(rdd1).collect().foreach(print)

在这里插入图片描述
在这里插入图片描述

1.9 leftOuterJoin

类似于 SQL 语句的左外连接

函数定义:

def leftOuterJoin[W](other: RDD[(K, W)]): RDD[(K, (V, Option[W]))]

    val rdd0: RDD[(Int, String)] = sparkRdd.makeRDD(List((1, "a"), (2, "b")))val rdd1: RDD[(Int, Int)] = sparkRdd.makeRDD(List((1, 4), (2, 5),(3, 6)))val rddRes = rdd0.leftOuterJoin(rdd1)rddRes.collect().foreach(print)

在这里插入图片描述

1.10 cogroup

在类型为(K,V)和(K,W)的 RDD 上调用,返回一个(K,(Iterable,Iterable))类型的 RDD,即先对

函数定义:

def cogroup[W](other: RDD[(K, W)]): RDD[(K, (Iterable[V], Iterable[W]))]

    val rdd0: RDD[(Int, String)] = sparkRdd.makeRDD(List((1, "a"), (2, "b"),(3,"c")))val rdd1: RDD[(Int, Int)] = sparkRdd.makeRDD(List((1, 4), (2, 5)))val rddRes = rdd0.cogroup(rdd1)rddRes.collect().foreach(print)

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/333466.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

《罗素论教育》笔记

目录 全书架构 书简介 经典摘录 一、教育的理想 教育的基本原理 教育的目的 二、品性的教育 一岁前的教育 主要是2岁到6岁的教育 三、智力教育 14岁前的课程安排 最后的学年 大学教育 四、结束语 全书架构 书简介 经典摘录 一、教育的理想 教育的基本原理 1、我…

vue3+echarts应用——深度遍历html的dom结构并用树图进行可视化

文章目录 ⭐前言💖vue3系列文章 ⭐html数据解析💖 html字符串转为html对象💖 深度遍历html对象内容 ⭐echarts 树图的渲染💖 处理html内容为树状结构💖 渲染树状图💖 inscode代码块 ⭐总结⭐结束 ⭐前言 大…

【面试高频算法解析】算法练习5 深度优先搜索

前言 本专栏旨在通过分类学习算法,使您能够牢固掌握不同算法的理论要点。通过策略性地练习精选的经典题目,帮助您深度理解每种算法,避免出现刷了很多算法题,还是一知半解的状态 专栏导航 二分查找回溯(Backtracking&…

湖南大学-数据库系统-2017期末考试解析

【写在前面】 这是2017年的卷子,复习备考的时候做了并与同学校对了答案。答案仅供参考。这张难度不大,比起前一年的并没有增加什么知识点。这一年好像没有简答题。 一、 单选题(每小题 2 分,共 20 分) 1 、数据库的概…

实战:低代码表单引擎助力文件上传与数据处理

在当今的信息化时代,数据已成为企业的重要资产。为了更好地管理和利用这些数据,许多企业开始采用表单上传组件来导入和处理数据。通过使用表单上传组件,用户可以方便地将文件上传至系统中,然后进行后续的数据处理和分析。这种方式…

局域网IP地址冲突、环路的罪魁祸首是什么?

中午好,我的网工朋友。 这个时代,网络已经贯穿了人们的生活,对企业而言,办公信息化更是离不开网络支持。 为了提高安全管理和信息化水平,很多企业都建立了完善的办公信息系统,但一些企业在网络建设方面还…

varnish的简单使用

varnish的简单使用 安装配置配置启动参数文件配置环境信息文件配置varnish反向代理 配置varnish启动varnish更加直观的查看varnish缓存手动清除缓存清除指定的缓存 varnish配置多后端配置多后端在本地配置域名解析查看测试结果 负载均衡配置导入模块定义负载均衡调度器调用负载…

ADS仿真 之 容差/良率分析

之所以要进行容差分析, 是因为任何电子元器件均存在一定的误差, 如电感、电容的精度等。 例如一个标称为2.0nH0.1nH的电感,代表的意思产品有99.74%的概率落在2.0nH0.1nH范围内, 即满足6σ ,σ是标准偏差或者说方差&…

Java虚拟机ART 读书笔记 第2章 深入理解Class文件格式

GitHub - Omooo/Android-Notes: ✨✨✨这有一包小鱼干,确定不要吃嘛?( 逃 深入理解Android:Java虚拟机ART 读书笔记 以下内容均来自书中内容 建议看原书哦 第2章 深入理解Class文件格式 2.1 class文件总览 Class文件格式全貌 u4&#xff…

苹果电脑交互式原型设计软件Axure RP 9 mac特色介绍

Axure RP 9 for Mac是一款交互式原型设计软件,使用axure rp9以最佳的方式展示您的作品,优化现代浏览器并为现代工作流程设计。同时确保您的解决方案正确完整地构建。Axure RP 9 for Mac为您整理笔记,将其分配给UI元素,并合并屏幕注…

2.SPSS数据文件的建立和管理

文章目录 数据文件的特点建立SPSS数据文件步骤 数据文件的结构变量的规则 数据的录入和保存录入数据保存文件 数据的编辑数据定位 数据文件的特点 SPSS数据库文件包括文件结构和数据两部分 SPSS数据文件中的一列数据称为一个变量。每个变量都应有一个名称,即&…

第二证券:股票私募仓位指数创近八周新高

1月8日,A股几大首要指数全线收跌,上证指数收于日内最低点2887.54点,间隔上一年5月份的阶段高点3418.95点现已跌去了15.54%。 不过,虽然商场仍未清晰止跌,私募基金们却现已进场“抄底”。私募排排网最新发布的私募仓位…