【算法设计与分析】网络流

目录

  • max-flow 和 min-cut
    • 流网络 Flow network
    • 最小割 Min-cut
    • 最大流 Max-flow
  • Greedy algorithm
  • Ford–Fulkerson algorithm
    • 剩余网络 Residual network
    • Ford–Fulkerson algorithm算法流程
  • 最大流最小割理论 max-flow min-cut theorem
  • 容量扩展算法 capacity-scaling algorithm
    • 时间复杂度分析 Analysis of Ford–Fulkerson algorithm
    • 优化:选择合适的增广路径
    • 选择足够大瓶颈容量的增广路径算法:Capacity-scaling algorithm
    • 寻找最短增广路径算法:BFS
  • 其他算法的时间复杂度

max-flow 和 min-cut

流网络 Flow network

流网络定义为一个元组 G = ( V , E , s , t , c ) G=(V, E, s, t, c) G=(V,E,s,t,c)

  • V:流网络中点的集合
  • s:源点,没有流量输入,只有流量输出 s ∈ V s ∈ V sV
  • t:汇点,没有流量输出,只有流量输入 t ∈ V t ∈ V tV
  • E:流网络中边的集合
  • c ( e i ) c(e_i) c(ei):边的容量, c ( e i ) > = 0 c(e_i) >= 0 c(ei)>=0
    在这里插入图片描述

最小割 Min-cut

割 (s-t cut) 被定义为一个点的划分 ( A , B ) (A, B) (A,B),其中 s ∈ A s ∈ A sA t ∈ B t ∈ B tB。即将流网络的所有点,分成两个部分 A 和 B。
割的容量(capacity):定义为 从 A 到 B 线段的容量之和: c a p ( A , B ) = ∑ e o u t o f A c ( e ) cap(A, B) = \sum_{ e\ out\ of\ A} c(e) cap(A,B)=e out of Ac(e)

如下图所示,A 仅包含 s,因此 c a p ( A , B ) = 10 + 5 + 15 = 30 cap(A, B) = 10 + 5 + 15 = 30 cap(A,B)=10+5+15=30
在这里插入图片描述
下图割的容量: c a p ( A , B ) = 10 + 8 + 16 = 34 cap(A, B) = 10 + 8 + 16 = 34 cap(A,B)=10+8+16=34
在这里插入图片描述

最小割(Min-cut):即整个流网络中,容量最小的那个割(st cut).

最大流 Max-flow

定义 流 st-flow (flow) f f f 是一个满足以下条件的函数:

  • 每一个 e ∈ E e ∈ E eE,均有 0 < = f ( e ) < = c ( e ) 0 <= f(e) <= c(e) 0<=f(e)<=c(e) ,即流量小于等于容量。
  • 对于任意 v ∈ V − s , v v ∈ V - {s , v} vVs,v,即出去源点和汇点的其他点: ∑ e i n t o v f ( e ) = ∑ e i o u t o f v f ( e ) \sum_{e\ in\ to\ v}f(e) = \sum_{e\ iout\ of\ v}f(e) e in to vf(e)=e iout of vf(e),即出去源点和汇点,所有进入点的流量等于流出点的容量。

进入v的流量: 5 + 5 + 0 = 13 5 + 5 + 0 =13 5+5+0=13、流出v的流量: 10 + 0 = 10 10 + 0 = 10 10+0=10
在这里插入图片描述

流 flow 的值定义为: v a l ( f ) = ∑ e o u t o f s f ( e ) − ∑ e i n t o s f ( e ) val(f) = \sum_{e\ out\ of\ s}f(e) - \sum_{e\ in\ to\ s}f(e) val(f)=e out of sf(e)e in to sf(e)

下图中,网络流的值为: 10 + 5 + 10 = 25 10 + 5 + 10 = 25 10+5+10=25
在这里插入图片描述
最大流Max-flow:流网络中,值最大的流即为最大流。

最大流问题最小割问题 问题是等价的。

Greedy algorithm

增广路径 Augmenrt Path:从 源点 s 到 汇点 t 的一条简单路径,路径上任意一条边均满足 f ( e ) < c ( e ) f(e) < c(e) f(e)<c(e)
阻塞流 Blocking Flow:如果一个 流 flow,找不到增广路径,则该流称为阻塞流。最大流一定是阻塞流,但阻塞流不一定是最大流

贪心算法的流程:

  • 初始流上,任意的 e ∈ E , f ( e ) = 0 e ∈ E, f(e) = 0 eE,f(e)=0
  • 进行流量的增加:
    • 寻找该流上的增广路径 P
    • 增加 增广路径 P 上各个边的流量
  • 重复流量增加的步骤,直至该流变成阻塞流

贪心算法得到的阻塞流并不一定是最大流,因为贪心在寻找增广路径之后,直接沿着找到的增广路径进行流量的增加,之后就继续找下一条增广路径。没有考虑增广路径找错的情况,没有办法减少增广路径上的错误流量。

Ford–Fulkerson algorithm

剩余网络 Residual network

原始边 Original edge e = ( u , v ) ∈ E e = (u, v) ∈ E e=(u,v)E,且边上的流量: f ( e ) f(e) f(e)、边上的容量: c ( e ) c(e) c(e)
在这里插入图片描述

反向边 e r e v e r s e = ( v , u ) e^{reverse} = (v, u) ereverse=(v,u)
剩余容量 c f ( e ) = { c ( e ) − f ( e ) e ∈ E f ( e r e v e r s e ) e r e v e r s e ∈ E c_f(e)=\begin{cases} c(e)-f(e) &e∈E \\ f(e^{reverse})&e^{reverse}∈E \end{cases} cf(e)={c(e)f(e)f(ereverse)eEereverseE
在这里插入图片描述

剩余网络 Residual network G = ( V , E f , s , t , c f ) G = (V, E_f, s, t, c_f) G=(V,Ef,s,t,cf)

  • E f = { e : f ( e ) < c ( e ) } ∪ { e : f ( e r e v e r s e ) > 0 } E_f = \{e: f(e) < c(e)\} ∪ \{e: f(e^{reverse}) > 0\} Ef={e:f(e)<c(e)}{e:f(ereverse)>0}

定义增广路径瓶颈容量 为 增广路径上,最小的剩余容量。

Ford–Fulkerson algorithm算法流程

  • 初始流上,任意的 e ∈ E , f ( e ) = 0 e ∈ E, f(e) = 0 eE,f(e)=0
  • 进行剩余图上流量的增加:
    • 寻找该剩余图上的增广路径 P
    • 增加 增广路径 P 上各个边的流量,同时在剩余图上添加反向变
  • 重复流量增加的步骤,直至该流变成阻塞流

算法的流量增减都是在剩余图上进行操作的。

最大流最小割理论 max-flow min-cut theorem

定义 f f f 为任意的 流 flow ( A , B ) (A, B) (A,B) 为任意的 割 cut,则 f f f的流量大小等于流过 ( A , B ) (A,B) (A,B)的流量。
v a l ( f ) = ∑ e o u t o f A f ( e ) − ∑ e i n t o A f ( e ) val(f) = \sum_{e \ out \ of A}f(e) - \sum_{e \ in \ to\ A}f(e) val(f)=e out ofAf(e)e in to Af(e)

在这里插入图片描述
在这里插入图片描述
v a l ( f ) = ∑ e o u t o f A f ( e ) − ∑ e i n t o A f ( e ) v a l ( f ) = ∑ e o u t o f s f ( e ) − ∑ e i n t o s f ( e ) = ∑ v ∈ A ( ∑ e o u t o f A f ( e ) − ∑ e i n t o A f ( e ) ) = ∑ e o u t o f A f ( e ) − ∑ e i n t o A f ( e ) val(f) = \sum_{e \ out \ of A}f(e) - \sum_{e \ in \ to\ A}f(e)\\ val(f) = \sum_{e \ out \ of s}f(e) - \sum_{e \ in \ to\ s}f(e)\\ = \sum_{v ∈ A}( \sum_{e \ out \ of A}f(e) - \sum_{e \ in \ to\ A}f(e))\\ = \sum_{e \ out \ of A}f(e) - \sum_{e \ in \ to\ A}f(e) val(f)=e out ofAf(e)e in to Af(e)val(f)=e out ofsf(e)e in to sf(e)=vA(e out ofAf(e)e in to Af(e))=e out ofAf(e)e in to Af(e)

同时定义 f f f 为任意的 流 flow ( A , B ) (A, B) (A,B) 为任意的 割 cut,则 v a l ( f ) < = c a p ( A , B ) val(f) <= cap(A, B) val(f)<=cap(A,B)
v a l ( f ) = ∑ e o u t o f A f ( e ) − ∑ e i n t o A f ( e ) < = ∑ e o u t o f A f ( e ) < = ∑ e o u t o f A c ( e ) = c a p ( A , B ) val(f) = \sum_{e \ out \ of A}f(e) - \sum_{e \ in \ to\ A}f(e)<= \sum_{e \ out \ of A}f(e) <= \sum_{e \ out \ of A}c(e) = cap(A, B) val(f)=e out ofAf(e)e in to Af(e)<=e out ofAf(e)<=e out ofAc(e)=cap(A,B)

定义 f f f 为任意的 流 flow ( A , B ) (A, B) (A,B) 为任意的 割 cut。如果 v a l ( f ) = c a p ( A , B ) val(f) = cap(A, B) val(f)=cap(A,B),那 f f f 一定是最大流, ( A , B ) (A, B) (A,B)一定是最小割。

Max-flow min-cut theorem:Value of a max flow = capacity of a min cut.

容量扩展算法 capacity-scaling algorithm

时间复杂度分析 Analysis of Ford–Fulkerson algorithm

假设 流网络 中所有的边上的容量均为整数,且 范围是 1~C。
则 FFA算法中,每一条边的流量和剩余容量也都是正整数。

假设 f ∗ f* f 是某流网络的最大流,则该流网络中最大流流量 v a l ( f ∗ ) < = n C val(f*) <= nC val(f)<=nC

又每次增广路径最少也会增加 1 的流量,假设使用 BFS、DFS来寻找增广路径,时间复杂度为 O ( m ) O(m) O(m),则Ford–Fulkerson algorithm 的时间复杂度最坏为: T ( n ) = O ( m n C ) T(n) = O(mnC) T(n)=O(mnC)

T ( n ) = O ( m n C ) T(n) = O(mnC) T(n)=O(mnC)的情况出现在,每一次找到的增广路径都只能增加一个容量,例如:
在这里插入图片描述

如果时间复杂度为 O ( m n C ) O(mnC) O(mnC),那么该时间复杂度并非多项式时间的,需要根据边的数量以及容量的大小来判断是否能在一定时间内解决。

优化:选择合适的增广路径

出现上述非多项式时间的时间复杂度的情况的原因:每一次增广路径都只增加1个流量,即瓶颈容量为1的增广路径。
因此我们可以选择更合适的增广路径。

  • 最大瓶颈容量的增广路径
  • 足够大的瓶颈容量的增广路径
  • 最短路径的增广路径

选择足够大瓶颈容量的增广路径算法:Capacity-scaling algorithm

算法大致流程:

  • 首先遍历所有的边,得到最大容量/2,将其设置为当前瓶颈容量下限 k
  • 在剩余图中寻找瓶颈容量大于等于 k 的增广路径
    • 如果找到了就执行FFA算法
    • 如果找不到了,就将 k 减小到原来的一半
  • 一直执行寻找增广路径的循环,直至 k 变为1,此时所有的增广路径都能正常寻找到。

算法伪代码
在这里插入图片描述
m:边的数量
n:点的数量
C:容量的上限
使用该算法寻找增广路径,总的寻找最大流的时间复杂度: T ( n ) = O ( m 2 l o g C ) T(n) = O(m^2logC) T(n)=O(m2logC)

寻找最短增广路径算法:BFS

使用队列,不断扩展下一个节点,当到达 t ,此路径即为最短路。

算法伪代码
在这里插入图片描述

m:边的数量
n:点的数量
C:容量的上限
使用该算法寻找增广路径,总的寻找最大流的时间复杂度: T ( n ) = O ( m 2 n ) T(n) = O(m^2n) T(n)=O(m2n)

其他算法的时间复杂度

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/334048.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Unity C# 枚举多选

枚举多选 &#x1f96a;例子&#x1f354;判断 &#x1f96a;例子 [System.Flags]public enum TestEnum{ None 0,Rooms 1 << 1,Walls1<<2,Objects1<<3,Slabs 1 << 4,All Rooms|Walls|Objects|Slabs}&#x1f354;判断 TestEnum test TestEnum.R…

2023最后一份报告:「数」说我们的故事

2023年 我们与「AI」加「数」前行 见证了AI数智时代带来的新生动能 亲临了AI带给我们蓬勃向上的力量 这一年 我们在“AISocial Power”的 征途上一路高歌 1,932,874次用数据与用户连接 10,521全域声量提及 为1000头部品牌 提供社媒营销数智化服务 也在游戏、宠物、鞋服…

java数据结构与算法刷题-----LeetCode343. 整数拆分(TODO)

java数据结构与算法刷题目录&#xff08;剑指Offer、LeetCode、ACM&#xff09;-----主目录-----持续更新(进不去说明我没写完)&#xff1a;https://blog.csdn.net/grd_java/article/details/123063846 很多人觉得动态规划很难&#xff0c;但它就是固定套路而已。其实动态规划只…

TagTextView 行内标签TextView

效果 效果如下&#xff0c;可以解析xml中配置的drawableStart &#xff0c;然后将这个drawable显示在一行内。下一个开始。从这个drawable开始。 代码 MaxLengthTextView 是我另外一个自定义view MaxLengthTextView 如果内容超过xml中maxLength属性定义的文字数量时&#x…

数据治理实践 | 小文件治理

前言 感谢关注&#xff0c;可以关注B站同名&#xff1a;语兴呀或公众号语数获取资料。 小文件是数仓侧长期头痛问题&#xff0c;它们会占用过多的存储空间&#xff0c;影响查询性能。因此&#xff0c;我们需要采取一些措施来对小文件进行治理&#xff0c;以保证Hive的高效性和…

@DependsOn:解析 Spring 中的依赖关系之艺术

欢迎来到我的博客&#xff0c;代码的世界里&#xff0c;每一行都是一个故事 DependsOn&#xff1a;解析 Spring 中的依赖关系之艺术 前言简介基础用法高级用法在 XML 配置中使用 DependsOn通过 Java Config 配置实现依赖管理 生命周期与初始化顺序Bean 生命周期的关键阶段&…

自养号测评,打造速卖通爆款的正确方式

对于新卖家来说&#xff0c;积极进行产品测评并不可耻&#xff0c;而是一个明智之举。耗费过多时间却无法起步才算可耻&#xff0c;因为新店在速卖通几乎得不到任何活动支持&#xff0c;流量也相当有限。在最初的90天内完成60单交易对于新手来说是一项艰巨的任务&#xff0c;因…

阿里云服务器e实例和云服务器u1实例有什么区别?

阿里云服务器u1和e实例有什么区别&#xff1f;ECS通用算力型u1实例是企业级独享型云服务器&#xff0c;ECS经济型e实例是共享型云服务器&#xff0c;所以相比较e实例&#xff0c;云服务器u1性能更好一些。e实例为共享型云服务器&#xff0c;共享型实例采用非绑定CPU调度模式&am…

Android签名漏洞

1. 什么是签名漏洞 Android证书签名漏洞&#xff0c;是指攻击者可以在不改变原APK的签名情况下修改APK的代码&#xff0c;从而绕过Android的签名认证安全机制。通过植入恶意代码的到仿冒的App中&#xff0c;就可替代原有的App做下载、更新。 正常情况下&#xff0c;开发者发布了…

Java基础语法之泛型

什么是泛型 泛型就是适用于许多类型&#xff0c;一个泛型类或者一个泛型方法可以应用于多种类型&#xff0c;从代码上讲&#xff0c;就是对类型实现了参数化&#xff08;换句话说就是使类型也可以传参&#xff09; 引出泛型 实现一个类&#xff0c;类中包含一个数组成员&…

IS-IS协议基本配置实验(初学版)

实验组网&#xff1a; 介绍&#xff1a;IP 地址、IS-IS 区域、IS-IS 路由器等级如图所示&#xff0c;其中 R1、R2、R3 属于 49.0001 区域&#xff0c;R4、R5 属于 49.0002 区域&#xff0c;所有路由器均创建 Lopback0 接口&#xff0c;其P 地址为 10.0.xx/32&#xff0c;其中x为…

伺服电机:编码器原理与分类

什么是编码器&#xff1f; 编码器是将旋转位置的改变转换为电气信号。 编码器是伺服系统闭环控制不可缺少的部件&#xff0c;编码器应用在轴的闭环控制和大多数的自动化控制中。编码器为闭环控制提供位置或速度的实际测量值。 一、编码器的分类 从编码器的原理和产生的信号类…