【机器学习】模型参数优化工具:Optuna使用分步指南(附XGB/LGBM调优代码)

在这里插入图片描述

常用的调参方式和工具包

常用的调参方式包括网格搜索(Grid Search)、**随机搜索(Random Search)贝叶斯优化(Bayesian Optimization)**等。

工具包方面,Scikit-learn提供了GridSearchCV和RandomizedSearchCV等用于网格搜索和随机搜索的工具。另外,有一些专门用于超参数优化的工具包,如OptunaHyperopt等。

这些方法各自有优缺点。网格搜索和随机搜索易于理解和实现,但在超参数空间较大时计算代价较高。贝叶斯优化考虑了不同参数之间的关系,可以在较少实验次数内找到较优解,但实现较为复杂。

Optuna是什么?

Optuna是一个基于贝叶斯优化的超参数优化框架。它的目标是通过智能的搜索策略,尽可能少的实验次数找到最佳超参数组合。Optuna支持各种机器学习框架,包括Scikit-learn、PyTorch和TensorFlow等。

Optuna的优势和劣势

个人使用体验:比起网格搜索和随机搜索,Optuna最明显的优势就是快。虽然最后的提升效果未必有前两种好,但是在整体效率上来看,Optuna能够大大减少调参时间。

优势:

  1. 智能搜索策略: Optuna使用TPE(Tree-structured Parzen Estimator)算法进行贝叶斯优化,能够更智能地选择下一组实验参数,从而加速超参数搜索。
  2. 轻量级: Optuna的设计简单而灵活,易于集成到现有的机器学习项目中。
  3. 可视化支持: 提供结果可视化工具,帮助用户直观地了解实验过程和结果。
  4. 并行优化: Optuna支持并行优化,能够充分利用计算资源,提高搜索效率。

劣势:

  1. 适用范围: 对于超参数空间较小或者问题较简单的情况,Optuna的优势可能不如其他方法显著。

如何使用Optuna进行调参?

使用Optuna进行调参的基本步骤如下:

  1. 定义超参数搜索空间: 使用Optuna的API定义超参数的搜索范围,例如学习率、层数等。
  2. 定义目标函数: 编写一个目标函数,用于评估给定超参数组合的模型性能。
  3. 运行Optuna优化: 使用Optuna的optimize函数运行优化过程,选择适当的搜索算法和优化目标。
  4. 获取最佳超参数: 通过Optuna提供的API获取找到的最佳超参数组合。

调参代码示例

主要分为几个步骤:

  1. 定义目标函数: 1)定义参数搜索范围 2)定义、训练和评估模型
  2. 运行Optuna优化
  3. 获取最佳超参数

1. SVM调优例子

以下是一个使用Optuna进行超参数优化的简单示例,假设我们使用Scikit-learn中的SVM进行分类:

import optuna
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC# 载入数据
data = datasets.load_iris()
X_train, X_test, y_train, y_test = train_test_split(data.data, data.target, test_size=0.2)# 定义目标函数
def objective(trial):# 定义超参数搜索范围C = trial.suggest_loguniform('C', 1e-5, 1e5)gamma = trial.suggest_loguniform('gamma', 1e-5, 1e5)# 构建SVM模型model = SVC(C=C, gamma=gamma)# 训练和评估模型model.fit(X_train, y_train)accuracy = model.score(X_test, y_test)return accuracy# 运行Optuna优化
study = optuna.create_study(direction='maximize')
study.optimize(objective, n_trials=100)# 获取最佳超参数
best_params = study.best_params
print("最佳超参数:", best_params)

2.LGBM调优例子

def objective(trial):params = {'objective': 'multiclass','metric': 'multi_logloss',  # Use 'multi_logloss' for evaluation'boosting_type': 'gbdt','num_class': 3,  # Replace with the actual number of classes'num_leaves': trial.suggest_int('num_leaves', 2, 256),'learning_rate': trial.suggest_loguniform('learning_rate', 0.001, 0.1),'feature_fraction': trial.suggest_uniform('feature_fraction', 0.1, 1.0),'bagging_fraction': trial.suggest_uniform('bagging_fraction', 0.1, 1.0),'bagging_freq': trial.suggest_int('bagging_freq', 1, 10),'min_child_samples': trial.suggest_int('min_child_samples', 5, 100),}model = lgb.LGBMClassifier(**params)model.fit(X_train, y_train)y_pred = model.predict_proba(X_val)    loss = log_loss(y_val, y_pred)return lossstudy = optuna.create_study(direction='minimize')
study.optimize(objective, n_trials=50,show_progress_bar=True)# Get the best parameters
best_params = study.best_params
print(f"Best Params: {best_params}")

3.XGB调优例子

def objective(trial):params = {'objective': 'multi:softprob',  # 'multi:softprob' for multiclass classification'num_class': 3,  # Replace with the actual number of classes'booster': 'gbtree','eval_metric': 'mlogloss',  # 'mlogloss' for evaluation'max_depth': trial.suggest_int('max_depth', 2, 10),'learning_rate': trial.suggest_loguniform('learning_rate', 0.001, 0.1),'subsample': trial.suggest_uniform('subsample', 0.1, 1.0),'colsample_bytree': trial.suggest_uniform('colsample_bytree', 0.1, 1.0),'min_child_weight': trial.suggest_int('min_child_weight', 1, 10),}model = XGBClassifier(**params)model.fit(X_train, y_train)y_pred = model.predict_proba(X_val)loss = log_loss(y_val, y_pred)return lossstudy = optuna.create_study(direction='minimize')
study.optimize(objective, n_trials=50, show_progress_bar=True)# Get the best parameters
best_params = study.best_params
print(f"Best Params: {best_params}")

通过这个示例,你可以看到Optuna的简洁和易用性。通过定义搜索空间和目标函数,Optuna会自动选择最优的超参数组合。

总结

Optuna作为一个高效的超参数优化工具,在调参过程中具有明显的优势。通过智能的搜索策略和轻量级的设计,它可以显著减少调参的时间和计算资源成本。当面对大规模超参数搜索问题时,Optuna是一个值得考虑的利器,能够帮助机器学习和数据科学领域的从业者更高效地优化模型性能。

参考链接

官网:https://optuna.org/
说明文档:https://optuna.readthedocs.io/en/stable/
中文文档:https://optuna.readthedocs.io/zh-cn/latest/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/334074.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python print 高阶玩法

Python print 高阶玩法 当涉及到在Python中使用print函数时,有许多方式可以玩转文本样式、字体和颜色。在此将深入探讨这些主题,并介绍一些print函数的高级用法。 1. 基本的文本样式与颜色设置 使用ANSI转义码 ANSI转义码是一种用于在终端&#xff0…

基于WebRTC技术的EasyRTC视频云服务系统在线视频客服解决方案

一、需求分析 随着互联网技术的发展,视频客服也成为服务行业的标配体验,基于WebRTC实时通信技术,客服人员与用户可以建立实时双向的视频交互与沟通。借助视频客服功能可以更加直观地了解用户的需求,提高沟通效率,并帮…

双目相机标定基础总结

首先将双目相机的标定进行总结,然后推导本征矩阵和基本矩阵的公式,推导比较复杂, 根据前面双目标定的到的参数进行立体校正。 文章目录 一、双目相机模型1、双目进行立体成像的过程2、理想的双目系统 二、双目相机标定1、对极几何2、本征矩阵…

聚道云软件连接器助力某餐饮管理有限公司实现人力资源信息自动化

客户介绍: 某餐饮管理有限公司是一家集餐饮连锁、餐饮管理、餐饮咨询等业务于一体的综合性餐饮企业。公司业务遍布全国多个城市,拥有众多员工。 添加图片注释,不超过 140 字(可选) 客户痛点: 员工入离职…

Python基础语法(上)——基本语法、顺序语句、判断语句、循环语句(有C++基础快速掌握Python语言)

文章目录 0.python小技巧与易错点1.python 与 c 语法有哪些区别2.Python基本语法2.1python的变量类型2.2python中的运算符2.3python中的表达式2.4python中的输入输出 3.python判断语句3.1基本用法:3.2关于else if 的用法3.3关于pass语句3.4python变量的作用域3.5pyt…

Docker 部署后端项目自动化脚本

文章目录 开机自启动docker打包后端项目Dockerfile文件脚本文件使用 开机自启动docker systemctl enable dockersystemctl is-enabled docker打包后端项目 这里的项目位置是target同级目录 1.在项目下面新建一个bin目录 新建一个package.txt 写入下方代码后 后缀改为.bat ec…

编码技巧(二) element-ui table中根据状态控制是否可以勾选

项目中使用element-ui时,表格中的数据有不同的状态,需要对某个状态的数据进行 勾选操作 如图所示: 只有id为12的符合条件可以进行勾选 <el-table-column type="selection" header-align="center" :selectable="selectable" align="c…

外汇天眼:监管重磅出击,假冒害人平台难逃法网!

就在最近&#xff0c;英国金融行为监管局&#xff08;FCA&#xff09;多次向投资者警告&#xff0c;有多家假冒外汇交易平台正在进行诈骗&#xff0c;涉及正版Eightcap、正版Admiral Markets UK以及正版XTB。具体新闻如下&#xff1a; 英国FCA警告不要使用假冒Eightcap 上周&a…

c JPEG编码,但有错误

#include <stdio.h> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <stdlib.h> #include <unistd.h> #include <sys/ioctl.h> #include <linux/videodev2.h> //v4l2 头文件 #include <strin…

x-cmd pkg | vhs - 将终端的操作过程录制成视频文件的终端录制工具

目录 简介首次用户声明式录制脚本其他功能竞品和相关作品进一步阅读 简介 vhs 是一个命令行录制工具&#xff0c;用于将终端的操作过程录制成视频文件。是由 Charmbracelet 团队使用 Go 开发的&#xff0c;首个版本发布于 2022 年 10 月。开源不到一个月有接近 8k 的 star。 …

Unity中URP下开启和使用深度图

文章目录 前言一、在Unity中打开URP下的深度图二、在Shader中开启深度图1、使用不透明渲染队列才可以使用深度图2、半透明渲染队列深度图就会关闭 三、URP深度图 和 BRP深度图的区别四、在Shader中&#xff0c;使用深度图1、定义纹理和采样器2、在片元着色器对深度图采样并且输…

35岁程序员,坐标杭州,月薪3W,退休时能领多少钱?

35岁程序员&#xff0c;坐标杭州&#xff0c;月薪3W&#xff0c;退休时能领多少钱&#xff1f; 作为一个35岁的程序员&#xff0c;生活在繁华的杭州这座城市&#xff0c;每个月能够拿到3万元的薪水&#xff0c;是一种相对较高的收入水平。然而&#xff0c;随着时间的推移&…