【算法系列 | 12】深入解析查找算法之—斐波那契查找

序言

心若有阳光,你便会看见这个世界有那么多美好值得期待和向往。

决定开一个算法专栏,希望能帮助大家很好的了解算法。主要深入解析每个算法,从概念到示例。

我们一起努力,成为更好的自己!

今天第12讲,讲一下查找算法的—斐波那契查找

一、算法介绍

斐波那契查找算法是一种基于黄金分割的有序查找算法,通过斐波那契数列的特性,在有序序列中快速定位目标元素的位置。

1.1 原理介绍

它结合了二分查找和黄金分割的思想。这个算法的基本原理如下:

  1. 序列构建: 首先,需要一个有序的数组或序列。这个数组的长度通常是斐波那契数列中的一个值,这有助于在查找过程中对数组进行分割。

  2. 斐波那契数列: 斐波那契数列是一组按以下递归关系定义的数字序列:F(0) = 0,F(1) = 1,F(n) = F(n-1) + F(n-2)(n > 1)。通常,斐波那契数列的前几项是:0, 1, 1, 2, 3, 5, 8, 13, 21, ...

  3. 查找过程: 对于一个有序序列,首先选择一个斐波那契数列中的值,使得这个值大于或等于待查找序列的长度,然后使用这个斐波那契数列的值将序列分成两个部分。这两个部分的长度之比就是相邻两个斐波那契数的比例。

  4. 比较: 比较要查找的元素与序列中分割点的元素。如果相等,则找到了目标元素;如果待查找元素小于分割点元素,继续在前半部分进行查找;如果待查找元素大于分割点元素,继续在后半部分进行查找。

  5. 迭代: 重复上述步骤,不断缩小查找范围,直到找到目标元素或确定元素不在序列中。

示例说明

假设有一个有序数组 arr,长度为 n,而 n 正好是斐波那契数列中的某个值。为了简化,我们可以选择 n 为斐波那契数列中的某个值,比如 F(5) = 5,所以 n = 5。那么,我们有一个有序数组 arr,长度为 5。

arr = [1, 3, 5, 7, 9]

接下来,我们要查找值为 5 的元素在数组中的位置。以下是斐波那契查找的步骤:

1. 选择斐波那契数列的值: 在斐波那契数列中找到一个最小的值,使得 F(k) >= n,其中 k 是最小可能满足的索引。在这个例子中,我们选择 F(5) = 5。

 2. 分割数组: 将数组分成两个部分,长度比例为斐波那契数列中的两个相邻值的比例。在这个例子中,我们有两部分,长度比例是 3:2。

     arr_left = [1, 3, 5] arr_right = [7, 9]

3.  比较与查找: 比较要查找的元素(5)与分割点元素(arr[2] = 5)。如果相等,找到了目标元素。如果待查找元素小于分割点元素,继续在前半部分进行查找。如果待查找元素大于分割点元素,继续在后半部分进行查找。

 在这个例子中,5 等于分割点元素,所以我们找到了目标元素的位置。

4. 迭代: 重复上述步骤,直到找到目标元素或确定元素不在序列中。

1.2 优缺点

优点:

  1. 适用性广泛: 斐波那契查找适用于有序序列,尤其在序列长度接近斐波那契数列的某个值时效果更佳。相较于二分查找,斐波那契查找能够在某些特定情况下减少查找次数。

  2. 更好的平衡: 由于斐波那契查找使用黄金分割比例进行分割,使得分割后的两个子序列的长度比例更加接近,有助于保持查找的平衡性。

  3. 相对均匀的分割: 斐波那契查找相对于其他分割方法,如二分查找,能够产生更为均匀的分割,有助于在查找过程中更快地接近目标元素。

缺点:

  1. 数组长度限制: 斐波那契查找要求待查找的序列长度必须是斐波那契数列中的某个值,这在实际应用中可能不太灵活,特别是当数据规模不是恰好是斐波那契数列中的某个值时,可能需要对数据进行补齐。

  2. 比较次数不稳定: 斐波那契查找在某些情况下可能会比二分查找效果更好,但并不是在所有情况下都表现更好。具体的性能取决于待查找数据的分布情况和序列的长度。在一些场景下,二分查找可能更为稳定。

  3. 计算斐波那契数列: 为了选择合适的斐波那契数列的值,需要事先计算斐波那契数列,这可能涉及到一些计算成本,特别是对于较大的数据集。

总体来说,斐波那契查找算法在某些特定条件下表现优秀,但在实际应用中需要谨慎选择,并根据具体情况考虑使用。在一些情况下,简单的二分查找可能更加实用和高效。

1.3 复杂度

时间复杂度:

  1. 查找过程: 斐波那契查找的主要操作是不断地缩小查找范围,通过比较待查找元素与分割点元素来确定继续在前半部分还是后半部分进行查找。在每一步操作中,都可以将待查找范围缩小为原来的黄金分割比例,即约为 0.618

  2. 时间复杂度: 斐波那契查找的时间复杂度可以表示为 O(log n),其中 n 是待查找序列的长度。与二分查找相比,它的复杂度相对更低。

空间复杂度:

  1. 常数空间: 斐波那契查找算法的空间复杂度非常低。它只需要常数级别的额外空间来存储一些中间变量,如斐波那契数列的值、分割点等。

  2. O(1): 因此,斐波那契查找的空间复杂度可以表示为 O(1)。

总体来说,斐波那契查找在时间复杂度和空间复杂度上都相对较低,这使得它在某些特定场景下成为一个有效的查找算法。

但需要注意,实际效果还受到数据分布等因素的影响,因此在选择查找算法时,需要综合考虑具体情况。

1.4 使用场景

斐波那契查找算法在一些特定的场景下表现良好,适用于如下情况:

  1. 有序序列: 斐波那契查找要求待查找的序列是有序的,因为它是基于比较来缩小查找范围的。如果序列无序,需要先进行排序操作。

  2. 长度接近斐波那契数: 算法对序列的长度有一定的要求,最好是恰好是斐波那契数列中的某个值。在实际应用中,可以选择最接近并大于待查找序列长度的斐波那契数。

  3. 分布均匀: 如果数据在序列中的分布相对均匀,斐波那契查找可以更好地发挥其优势。这是因为它能够在分割序列时保持更好的平衡。

  4. 查找频繁但数据变动不频繁: 如果对同一序列进行多次查找而且序列基本保持不变,斐波那契查找的一些前期计算可以提前完成,然后多次使用相同的计算结果进行查找,从而提高效率。

  5. 适用于内存有限的情况: 斐波那契查找只需要常数级别的额外空间,因此在内存有限的情况下比一些其他算法更为适用。

需要注意的是,斐波那契查找并不总是比其他查找算法更好,它在特定的条件下才会表现出色。在实际应用中,需要根据具体情况选择最适合的查找算法。

二、代码实现

2.1 Java代码实现

2.1.1 代码示例

public class FibonacciSearch {// 辅助函数:生成斐波那契数列private static int[] generateFibonacci(int n) {int[] fibonacci = new int[n];fibonacci[0] = 0;fibonacci[1] = 1;for (int i = 2; i < n; i++) {fibonacci[i] = fibonacci[i - 1] + fibonacci[i - 2];}return fibonacci;}// 斐波那契查找算法public static int fibonacciSearch(int[] arr, int key) {int n = arr.length;// 生成斐波那契数列,找到最接近且大于等于 n 的值int[] fibonacci = generateFibonacci(n);int k = 0;while (fibonacci[k] < n) {k++;}// 将数组扩展到斐波那契数列的长度int[] temp = new int[fibonacci[k]];System.arraycopy(arr, 0, temp, 0, n);int low = 0;int high = n - 1;// 主要查找过程while (low <= high) {int mid = low + fibonacci[k - 1] - 1;if (key < temp[mid]) {high = mid - 1;k -= 1;} else if (key > temp[mid]) {low = mid + 1;k -= 2;} else {// 找到了目标元素,需要判断返回的是原数组中的索引还是扩展数组中的索引return Math.min(mid, high);}}// 未找到目标元素return -1;}public static void main(String[] args) {int[] arr = {1, 3, 5, 7, 9, 11, 13, 15};int key = 7;int result = fibonacciSearch(arr, key);if (result != -1) {System.out.println("元素 " + key + " 在数组中的索引为:" + result);} else {System.out.println("元素 " + key + " 不在数组中");}}
}

2.1.2 代码详解

  1. generateFibonacci方法:生成斐波那契数列,参数 n 表示生成数列的长度。

  2. fibonacciSearch方法:实现了斐波那契查找算法。首先,通过调用 generateFibonacci 方法生成斐波那契数列,然后找到最接近并大于等于数组长度的斐波那契数。接着,将原数组扩展到斐波那契数列的长度,再进行主要的查找过程。查找过程中,根据比较的结果不断缩小查找范围,直到找到目标元素或确定元素不在序列中。

  3. main方法:在这里,创建一个有序数组 arr,并调用 fibonacciSearch 方法查找元素 7 的索引。最后,输出查找结果。

2.1.3 运行结果

元素 7 在数组中的索引为:3

2.2 Python代码实现

2.2.1 代码示例

def generate_fibonacci(n):"""生成斐波那契数列"""fibonacci = [0, 1]while fibonacci[-1] < n:fibonacci.append(fibonacci[-1] + fibonacci[-2])return fibonaccidef fibonacci_search(arr, key):"""斐波那契查找算法"""n = len(arr)# 生成斐波那契数列,找到最接近且大于等于 n 的值fibonacci = generate_fibonacci(n)k = 0while fibonacci[k] < n:k += 1# 将数组扩展到斐波那契数列的长度temp = arr + [arr[-1]] * (fibonacci[k] - n)low, high = 0, n - 1# 主要查找过程while low <= high:mid = low + fibonacci[k - 1] - 1if key < temp[mid]:high = mid - 1k -= 1elif key > temp[mid]:low = mid + 1k -= 2else:# 找到了目标元素,返回原数组中的索引return min(mid, n - 1)# 未找到目标元素return -1if __name__ == '__main__':# 测试arr = [1, 3, 5, 7, 9, 11, 13, 15]key = 7result = fibonacci_search(arr, key)if result != -1:print(f"元素 {key} 在数组中的索引为:{result}")else:print(f"元素 {key} 不在数组中")

2.2.2 代码详解

  1. generate_fibonacci 函数:用于生成斐波那契数列,直到数列的最后一个值大于等于给定的参数 n

  2. fibonacci_search 函数:实现了斐波那契查找算法。首先,调用 generate_fibonacci 函数生成斐波那契数列,然后找到最接近并大于等于数组长度的斐波那契数。接着,将原数组扩展到斐波那契数列的长度,再进行主要的查找过程。查找过程中,根据比较的结果不断缩小查找范围,直到找到目标元素或确定元素不在序列中。

在测试部分,创建一个有序数组 arr,并调用 fibonacci_search 函数查找元素 7 的索引。最后,输出查找结果。

2.2.3 运行结果

元素 7 在数组中的索引为:3

好啦,今天就到这里啦,下期见喽~~🙉

三、图书推荐

3.1 图书名称

图书名称:《Pandas数据分析》

Pandas是强大且流行的库,是Python中数据科学的代名词。这本书会介绍如何使用Pandas对真实世界的数据集进行数据分析,如股市数据、模拟黑客攻击的数据、天气趋势、地震数据、葡萄酒数据和天文数据等

Pandas使我们能够有效地处理表格数据,从而使数据整理和可视化变得更容易。等不及的小伙伴,可以点击这个链接先睹为快 《Pandas数据分析》

3.2 图书介绍 

3.3 参与方式

图书数量:本次送出 2 本   !!!⭐️⭐️⭐️
活动时间:截止到 2024-01-09 12:00:00

抽奖方式:

  • 评论区随机抽取小伙伴!

留言内容,以下方式都可以:

  • 根据文章内容进行高质量评论

参与方式:关注博主、点赞、收藏,评论区留言 

3.4 中奖名单

🍓🍓 获奖名单🍓🍓

 中奖名单:请关注博主动态

名单公布时间:2024-01-09 下午

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/334234.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

在wsl中安装miniconda

下载安装包 打卡miniconda的官网https://docs.conda.io/projects/miniconda/en/latest/,下载下来安装包&#xff0c;或者直接在乌班图中运行命令wget https://repo.anaconda.com/miniconda/Miniconda3-py38_23.5.2-0-Linux-x86_64.sh,等待下载完毕 安装 到下载目录下执行命令…

vue中鼠标拖动触发滚动条的移动

前言 在做后端管理系统中&#xff0c;像弹窗或大的表单时&#xff0c;经常会有滚动条的出现&#xff0c;但有些时候如流程、图片等操作时&#xff0c;仅仅使用鼠标拖动滚动条操作不太方便&#xff0c;如果使用鼠标拖拽图片或容器来触发滚动条的移动就比较方便了 功能设计 如…

【STM32F103】RCC复位和时钟控制

前言 之前介绍外设的时候总是没有提到RCC&#xff0c;但其实我们使用STM32的外设之前都需要做的一步就是打开外设时钟。原本想着没什么可说的&#xff0c;就是用什么外设的时候就在开头加一行代码打开外设时钟就好了。直到最近写到了TIM定时器&#xff0c;我才开始觉得应该说一…

Python解析参数的三种方法

今天我们分享的主要目的就是通过在 Python 中使用命令行和配置文件来提高代码的效率 Let’s go! 我们以机器学习当中的调参过程来进行实践&#xff0c;有三种方式可供选择。第一个选项是使用 argparse&#xff0c;它是一个流行的 Python 模块&#xff0c;专门用于命令行解析&…

【前端素材】bootstrap4实现服装鞋饰电商平台Doron

一、需求分析 一个服装鞋饰电子商务页面是一个在线平台&#xff0c;用于展示和销售各种服装、鞋子和配饰产品。它通常具有以下功能&#xff1a; 产品展示&#xff1a;服装鞋饰电子商务页面会展示各种服装、鞋子和配饰产品的图片、描述和价格。这些产品可以按照不同的分类&#…

视频监控系统EasyCVR如何通过调用API接口查询和下载设备录像?

智慧安防平台EasyCVR是基于各种IP流媒体协议传输的视频汇聚和融合管理平台。视频流媒体服务器EasyCVR采用了开放式的网络结构&#xff0c;支持高清视频的接入和传输、分发&#xff0c;平台提供实时远程视频监控、视频录像、录像回放与存储、告警、语音对讲、云台控制、平台级联…

YOLOv8分割任务数据集标注流程

YOLOv8分割任务数据集标注流程 半自动化标注JSON转TXT 半自动化标注 这里使用了半自动化标注工具 链接&#xff1a;https://pan.baidu.com/s/1x22BtI_bHKH0iUUg0eTUdA 提取码&#xff1a;r5ca 需要指定权重和修改类别信息 配置文件中保存了类别、界面语言、轮廓模式等信息…

单因素方差分析--R

任务说明 三个剂量水平的药物处理受试者&#xff0c;每个剂量水平十个受试者&#xff0c;现在收集到数据后&#xff0c;问&#xff1a; 药物剂量水平显著影响受试者的response&#xff1f; 或者不同剂量药物处理受试者有显著效果的差异吗&#xff1f; 数据 library(tidyvers…

亚信安慧AntDB数据库容灾复制原理

AntDB数据库作为通信运营商领域的杰出的数据服务提供者&#xff0c;一直以来都十分重视数据安全问题&#xff0c;不断通过技术进步、方案创新等方式提升数据容灾能力。在信息化的时代&#xff0c;数据已经成为了重要的资源&#xff0c;对于企业来说&#xff0c;如何存储和管理这…

Linux文件系统与日志管理

目录 一、Linux文件系统 1、inode 与 block 详解 1.1 inode 和 block 概述 1.2 inode表的内容 1.3 查看文件的inode号码 1.4 模拟innode号耗尽故障处理 2、访问文件的流程 3、文件恢复 3.1 恢复误删除的ext3格式文件 3.2 恢复误删除的 xfs 格式文件 二、Linux日志…

Java-伪共享

在说这个计算机术语之前&#xff0c;我先在这里问候所有问“什么是JVM伪共享”的垃圾JAVA程序员以及一瓶不满半瓶晃荡的面试官全家 我从来没想过国内已经很卷的JAVA圈&#xff0c;已经卷到语无伦次的地步了&#xff0c;“伪共享”是java程序员应该知道的吗&#xff1f;能问出这…

kubernetes 网络解析

开头语 写在前面&#xff1a;如有问题&#xff0c;以你为准&#xff0c; 目前24年应届生&#xff0c;各位大佬轻喷&#xff0c;部分资料与图片来自网络 内容较长&#xff0c;页面右上角目录方便跳转 基础 Kubernetes 使用扁平网络模型&#xff0c;所有 Pod 都可以直接相互…