自监督深度学习技术

一、定义

自监督学习(SSL)是机器学习的一种范式,用于处理未标记数据以获取有用的表示,以帮助下游学习任务。SSL方法最显著的特点是它们不需要人类标注的标签,这意味着它的训练完全基于由未标记的数据样本组成的数据集。典型的SSL流程包括在第一阶段学习监督信号(自动生成的标签),这些监督信号将用于后续阶段中的某些监督学习任务。因此,SSL可以视为无监督学习和监督学习的中间形式。

自监督学习的核心思想是从输入数据中创建虚拟的监督信号,然后使用这些虚拟标签来训练模型。在训练过程中,模型根据虚拟标签进行优化,以学习数据中的有用特征和模式。这些虚拟标签可以是从原始数据中自动生成的,例如从图像中移除一部分内容并让模型预测缺失的内容,或者从文本中掩盖部分单词并让模型填补缺失的单词。

自监督学习主要是利用辅助任务(pretext)从大规模的无监督数据中挖掘自身的监督信息,通过这种构造的监督信息对网络进行训练,从而可以学习到对下游任务有价值的表征。 也就是说,自监督学习不需要任何的外部标记数据,这些标签是从输入数据自身中得到的

自监督学习的模式仍然是Pretrain-Fintune的模式,即先在pretext上进行预训练,然后将学习到的参数迁移到下游任务网络中,进行微调得到最终的网络。

二、方法

自监督学习的方法主要可以分为 3 类:

1. 基于上下文(Context based)

基于数据本身的上下文信息,可以构造很多任务,比如在 NLP 领域中Word2vec 主要是利用语句的顺序,例如 CBOW 通过前后的词来预测中间的词,而 Skip-Gram 通过中间的词来预测前后的词。;在图像中,图像拼图、图像修复、图像着色、图像旋转等任务都是典型的作为pretext的例子。

2. 基于时序(Temporal Based)

样本间具有很多约束关系,最能体现时序的数据类型就是视频了。例如,对于视频中的每一帧,其实存在着特征相似的概念,简单来说我们可以认为视频中的相邻帧特征是相似的,而相隔较远的视频帧是不相似的,通过构建这种相似(position)和不相似(negative)的样本来进行自监督约束。或者可以设计一个模型,来判断当前的视频序列是否是正确的顺序。

3. 基于对比(Contrastive Based)

对比约束,它通过学习对两个事物的相似或不相似进行编码来构建表征。通过构建正样本(positive)和负样本(negative),然后度量正负样本的距离来实现自监督学习,即样本和正样本之间的距离远远大于样本和负样本之间的距离,可以使用点积的方式构造距离函数,然后构造一个 softmax 分类器,以正确分类正样本和负样本。

https://zhuanlan.zhihu.com/p/108906502icon-default.png?t=N7T8https://zhuanlan.zhihu.com/p/108906502

https://www.cnblogs.com/polly333/p/17791786.htmlicon-default.png?t=N7T8https://www.cnblogs.com/polly333/p/17791786.html自监督学习分类:

三、自监督VIO

  • SelfVIO: Self-supervised deep monocular Visual–Inertial Odometry and depth estimation:GAN网络,位姿估计与深度估计组合进行,开源
  • DeepVIO: Self-supervised Deep Learning of Monocular Visual Inertial Odometry using 3D Geometric Constraints:端到端的单目VIO,从双目中获取监督信息
  • Vision-Aided Absolute Trajectory Estimation Using an Unsupervised Deep Network with Online Error Correction:VIOLearner,在网络训练过程中加入传统模型的引导,开源
  • CodeVIO: Visual-Inertial Odometry with Learned Optimizable Dense Depth:通过原始图像和级联稀疏深度图预测稠密的深度图及其不确定度的编码网络+通过对深度信息进行编码得到用于 VIO 优化的深度向量的变分自编码器
  • BoomVIO: bootstrapped monocular visual-inertial odometry with absolute trajectory estimation through unsupervised deep learning
  • Unsupervised monocular visual- inertial odometry network
  • Unsupervised Learning of Depth and Pose Based on Monocular Camera and Inertial Measurement Unit (IMU)
  • Scale-Aware Visual-Inertial Depth Estimation and Odometry Using Monocular Self-Supervised Learning
  • Attention Guided Unsupervised learning of Monocular Visual-inertial Odometry
  • CoVIO: Online Continual Learning for Visual-Inertial Odometry
  • Unsupervised Deep Visual-Inertial Odometry with Online Error Correction for RGB-D Imagery

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/339728.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2024开网店选择哪个平台?有经验就做视频号,没经验就做抖店

我是王路飞。 如今整体大环境都不怎么样的背景下,只有电商行业一直在蓬勃发展。 一方面是收到科技互联网的发展影响,短视频、直播带货等等都在推动这电商行业的转型; 另一方面也是人们消费观念的改观,从限制性较强的线下转移到…

Web实战丨基于django+html+css+js的电子商务网站

文章目录 写在前面实验目标需求分析实验内容安装依赖库1.登陆界面2.注册界面3.电子商城界面4.其他界面 运行结果写在后面 写在前面 本期内容:基于DjangoHTMLCSSJS的电子商务网站 实验环境: vscode或pycharmpython(3.11.4)django 代码下载地址&#x…

网络安全工具:通过监控分析日志数据保护企业网络

由于混合工作模式的兴起以及业务运营向云环境的迁移,企业网络变得更加分散和复杂,仅安装外围安全解决方案只会创建一个基本的防御层,系统、服务器和其他网络实体会生成记录所有网络活动的日志。集中式日志管理系统可以帮助管理员自动监控网络…

[NISACTF 2022]bingdundun~

[NISACTF 2022]bingdundun~ wp 信息搜集 进入题目: 点一下 upload? : 注意看上面的 URL ,此时是 ?bingdundunupload 。 随便找个文件上传一下: 注意看上面的 URL ,此时变成:upload.php 。 那么我有理…

防止串扰可不止3W规则,还有这些方法

随着半导体集成度越来越高,PCB层间的串扰问题愈发严重,虽然很多电子工程师通过3W规则来解决串扰,但你知道吗?还有很多方法可以抑制PCB板的串扰问题。 串扰CrossTalk)是指PCB上不同网络之间因较长的平行布线引起的相互干扰&#xf…

水产冷链物流行业零下25℃库架一体 海格里斯HEGERLS四向穿梭式冷藏冷库智能密集仓

随着国内外仓储物流整体规模和低温产品消费需求的稳步增长,冷链市场应用潜力不断释放。在传统“货架叉车”的方式下,货物、人员及机械设备不断进出,容易造成温度波动,导致冷量流失。立体冷库则以更高密度、更具成本效益的方式&…

【JVM 基础】类字节码详解

JVM 基础 - 类字节码详解 多语言编译为字节码在JVM运行Java字节码文件Class文件的结构属性从一个例子开始反编译字节码文件字节码文件信息常量池方法表集合类名 再看两个示例分析try-catch-finallykotlin 函数扩展的实现 源代码通过编译器编译为字节码,再通过类加载…

婴儿专用洗衣机有必要买吗?全网性价比高的宝宝洗衣机推荐

很多新手宝爸宝妈们在购买宝宝用品的时候,想要入手一款婴儿洗衣机,但在选婴儿洗衣机对很多新手宝妈宝爸来说也是一件很头疼的事情,婴儿洗衣机种类较多,而且功能的效果也有所不同!所以又迟迟不敢下手,关于宝…

【STM32】HAL库的RCC复位状态判断及NVIC系统软件复位

【STM32】HAL库的RCC复位状态判断及NVIC系统软件复位 在实际开发中 有时候会遇到复位状态不同 导致结果不同的情况 比如在上电复位时 电压不稳定 可能导致一些外部芯片无法正常工作 从而导致进行了错误的操作流程 所以 可以在程序运行后 加一个复位状态判断 用来检测是否正常复…

SpringCloudAlibaba微服务架构实战派上下册技术交流!

另外我的新书RocketMQ消息中间件实战派上下册,在京东已经上架啦,目前都是5折,非常的实惠。 https://item.jd.com/14337086.html​编辑https://item.jd.com/14337086.html “RocketMQ消息中间件实战派上下册”是我既“Spring Cloud Alibaba微…

计算机毕业设计------SSH宿舍管理系统

项目介绍 本项目分为三种角色:系统管理员、楼宇管理员、学生; 系统管理员主要功能如下: 楼宇管理员管理、学生管理、楼宇管理、宿舍管理、学生入住登记、学生寝室调换、学生迁出登记、学生缺勤记录、修改密码、退出登录 楼宇管理员主要功能…

生成式 AI 如何重塑软件开发流程和开发工具?

生成式AI正在重塑开发流程和开发工具,通过自动化和优化软件开发过程,提高开发效率和质量。它可以帮助开发人员快速生成代码、测试和部署应用程序,同时减少错误和缺陷。此外,生成式AI还可以帮助开发人员快速理解和解决复杂的技术问…