Python将Labelme文件的真实框和预测框绘制到图片上(v2.0)

Python将Labelme文件的真实框和预测框绘制到图片上(v2.0)

  • 前言
  • 前提条件
  • 相关介绍
  • 实验环境
  • Python将Labelme文件的标注信息绘制到图片上
    • 代码实现
    • 输出结果

在这里插入图片描述

前言

  • 此版代码,相较于Python将Labelme文件的真实框和预测框绘制到图片上,将无标注文件和无预测结果的数据集处理方法(异常跳过),也考虑进去了。
  • 由于本人水平有限,难免出现错漏,敬请批评改正。
  • 更多精彩内容,可点击进入Python日常小操作专栏、OpenCV-Python小应用专栏、YOLO系列专栏、自然语言处理专栏或我的个人主页查看
  • YOLOv8 Ultralytics:使用Ultralytics框架训练RT-DETR实时目标检测模型
  • 基于DETR的人脸伪装检测
  • YOLOv7训练自己的数据集(口罩检测)
  • YOLOv8训练自己的数据集(足球检测)
  • YOLOv5:TensorRT加速YOLOv5模型推理
  • YOLOv5:IoU、GIoU、DIoU、CIoU、EIoU
  • 玩转Jetson Nano(五):TensorRT加速YOLOv5目标检测
  • YOLOv5:添加SE、CBAM、CoordAtt、ECA注意力机制
  • YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层
  • Python将COCO格式实例分割数据集转换为YOLO格式实例分割数据集
  • YOLOv5:使用7.0版本训练自己的实例分割模型(车辆、行人、路标、车道线等实例分割)
  • 使用Kaggle GPU资源免费体验Stable Diffusion开源项目

前提条件

  • 熟悉Python

相关介绍

  • Python是一种跨平台的计算机程序设计语言。是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越多被用于独立的、大型项目的开发。
  • PyTorch 是一个深度学习框架,封装好了很多网络和深度学习相关的工具方便我们调用,而不用我们一个个去单独写了。它分为 CPU 和 GPU 版本,其他框架还有 TensorFlow、Caffe 等。PyTorch 是由 Facebook 人工智能研究院(FAIR)基于 Torch 推出的,它是一个基于 Python 的可续计算包,提供两个高级功能:1、具有强大的 GPU 加速的张量计算(如 NumPy);2、构建深度神经网络时的自动微分机制。
  • YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。它是一个在COCO数据集上预训练的物体检测架构和模型系列,代表了Ultralytics对未来视觉AI方法的开源研究,其中包含了经过数千小时的研究和开发而形成的经验教训和最佳实践。
  • Labelme是一款图像标注工具,由麻省理工(MIT)的计算机科学和人工智能实验室(CSAIL)研发。它是用Python和PyQT编写的,开源且免费。Labelme支持Windows、Linux和Mac等操作系统。
  • 这款工具提供了直观的图形界面,允许用户在图像上标注多种类型的目标,例如矩形框、多边形、线条等,甚至包括更复杂的形状。标注结果以JSON格式保存,便于后续处理和分析。这些标注信息可以用于目标检测、图像分割、图像分类等任务。
  • 总的来说,Labelme是一款强大且易用的图像标注工具,可以满足不同的图像处理需求。
  • Labelme标注json文件是一种用于存储标注信息的文件格式,它包含了以下几个主要的字段:
    • version: Labelme的版本号,例如"4.5.6"。
    • flags: 一些全局的标志,例如是否是分割任务,是否有多边形,等等。
    • shapes: 一个列表,每个元素是一个字典,表示一个标注对象。每个字典包含了以下几个字段:
      • label: 标注对象的类别名称,例如"dog"。
      • points: 一个列表,每个元素是一个坐标对,表示标注对象的边界点,例如[[10, 20], [30, 40]]。
      • group_id: 标注对象的分组编号,用于表示属于同一组的对象,例如1。
      • shape_type: 标注对象的形状类型,例如"polygon",“rectangle”,“circle”,等等。
      • flags: 一些针对该标注对象的标志,例如是否是难例,是否被遮挡,等等。
    • lineColor: 标注对象的边界线颜色,例如[0, 255, 0, 128]。
    • fillColor: 标注对象的填充颜色,例如[255, 0, 0, 128]。
    • imagePath: 图像文件的相对路径,例如"img_001.jpg"。
    • imageData: 图像文件的二进制数据,经过base64编码后的字符串,例如"iVBORw0KGgoAAAANSUhEUgAA…"。
    • imageHeight: 图像的高度,例如600。
    • imageWidth: 图像的宽度,例如800。

以下是一个Labelme标注json文件的示例:

{"version": "4.5.6","flags": {},"shapes": [{"label": "dog","points": [[121.0,233.0],[223.0,232.0],[246.0,334.0],[121.0,337.0]],"group_id": null,"shape_type": "polygon","flags": {}}],"lineColor": [0,255,0,128],"fillColor": [255,0,0,128],"imagePath": "img_001.jpg","imageData": "iVBORw0KGgoAAAANSUhEUgAA...","imageHeight": 600,"imageWidth": 800
}

实验环境

  • Python 3.x (面向对象的高级语言)

Python将Labelme文件的标注信息绘制到图片上

  • 项目结构
    在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

代码实现

  • 此版代码,相较于Python将Labelme文件的真实框和预测框绘制到图片上,将无标注文件和无预测结果的数据集处理方法(异常跳过),也考虑进去了。
import os
import cv2
import json
import copydef query_info_in_json_and_rectangle(in_img_path,real_json_path,pred_json_path,out_img_path):'''查询json文件的信息并绘制'''img = cv2.imread(in_img_path)try:# 绘制真实框with open(real_json_path,'r') as f:json_data = json.load(f)# print(json_data)# 以查询label信息为例,比如输出'label' == "49"的标注信息json_data_shape =  copy.deepcopy(json_data['shapes'])if json_data_shape != []:for i in json_data_shape:x1 = int(i['points'][0][0])y1 = int(i['points'][0][1])x2 = int(i['points'][1][0])y2 = int(i['points'][1][1])xmin = min(x1,x2)ymin = min(y1,y2)xmax = max(x1,x2)ymax = max(y1,y2)label_name = i['label']cv2.rectangle(img,(xmin,ymin),(xmax,ymax),(0, 0, 255), 2, cv2.LINE_AA)cv2.putText(img,label_name,(xmin-5,ymin), cv2.FONT_HERSHEY_SIMPLEX, 1,(0,0,255),2)except Exception as e:print(e)try:# 绘制预测框with open(pred_json_path,'r') as f:json_data = json.load(f)# print(json_data)# 以查询label信息为例,比如输出'label' == "49"的标注信息json_data_shape =  copy.deepcopy(json_data['shapes'])if json_data_shape != []:for i in json_data_shape:x1 = int(i['points'][0][0])y1 = int(i['points'][0][1])x2 = int(i['points'][1][0])y2 = int(i['points'][1][1])xmin = min(x1,x2)ymin = min(y1,y2)xmax = max(x1,x2)ymax = max(y1,y2)label_name = i['label']cv2.rectangle(img,(xmin,ymin),(xmax,ymax),(255, 0, 0), 1, cv2.LINE_AA)cv2.putText(img,label_name,(xmin-5,ymin), cv2.FONT_HERSHEY_SIMPLEX, 1,(255,0,0),1)# 保存结果图片cv2.imwrite(out_img_path,img)except Exception as e:print(e)if __name__=="__main__":in_img_dir = 'images/'real_json_dir = 'jsons/'pred_json_dir = 'results/'output_dir = 'output_imgs/'if not os.path.exists(output_dir):os.mkdir(output_dir) img_name_list = [i for i in os.listdir(in_img_dir) if i.endswith('.png') or i.endswith('.jpg') or i.endswith('.tif') or i.endswith('.jpeg') or i.endswith('.bmp')]# print(img_name_list)for img_name in img_name_list:in_img_path = in_img_dir + img_nameif img_name.endswith('.jpeg'):real_json_path = real_json_dir + img_name[:-5]+'.json'pred_json_path = pred_json_dir + img_name[:-5]+'.json'out_img_path = output_dir + img_name[:-5]+'.jpg'else:real_json_path = real_json_dir + img_name[:-4]+'.json'pred_json_path = pred_json_dir + img_name[:-4]+'.json'out_img_path = output_dir + img_name[:-4]+'.jpg'# 将Labelme文件的标注信息绘制到图片上query_info_in_json_and_rectangle(in_img_path,real_json_path,pred_json_path,out_img_path)

输出结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 注:真实框(红色),预测框(蓝色)
  • 由于本人水平有限,难免出现错漏,敬请批评改正。
  • 更多精彩内容,可点击进入Python日常小操作专栏、OpenCV-Python小应用专栏、YOLO系列专栏、自然语言处理专栏或我的个人主页查看
  • YOLOv8 Ultralytics:使用Ultralytics框架训练RT-DETR实时目标检测模型
  • 基于DETR的人脸伪装检测
  • YOLOv7训练自己的数据集(口罩检测)
  • YOLOv8训练自己的数据集(足球检测)
  • YOLOv5:TensorRT加速YOLOv5模型推理
  • YOLOv5:IoU、GIoU、DIoU、CIoU、EIoU
  • 玩转Jetson Nano(五):TensorRT加速YOLOv5目标检测
  • YOLOv5:添加SE、CBAM、CoordAtt、ECA注意力机制
  • YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层
  • Python将COCO格式实例分割数据集转换为YOLO格式实例分割数据集
  • YOLOv5:使用7.0版本训练自己的实例分割模型(车辆、行人、路标、车道线等实例分割)
  • 使用Kaggle GPU资源免费体验Stable Diffusion开源项目

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/340647.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

R语言下载安装及VScode配置

文章目录 1. R 下载和安装1.1 下载1.2 安装 2. VSCODE 配置2.1 安装R拓展2.2 安装R语言辅助功能包2.3 DEBUG 1. R 下载和安装 1.1 下载 网址:https://www.r-project.org/ 选择一个镜像地址下载 选择对应的版本 一般选择base即可 1.2 安装 下载安装包后按提示安装…

MYSQL的学习——单行函数详解

目录 1. 数值函数 1) 基本函数 2) 角度与弧度互换函数 3) 三角函数 4) 指数与对数函数 5) 进制间的转换 2. 字符串函数 3. 日期和时间函数 1) 获取日期、时间 2) 日期与时间戳的转换 3) 获取月份、星期、星期数、天数等函数 4) 日期的操作函数 5) 时间和秒钟转换的…

常用机床类型的用途和介绍

随着市场对机加工需求的提升,机械加工的技术精度也随之提高,机床的种类也就越来越多。 根据加工方法和使用的工具进行分类,国家将机床编制为11类:车床、钻床、镗床、磨床、齿轮加工机床、螺纹加工机床、铣床、刨床、拔床、锯床等…

微信小程序-----账号注册以及开发软件的下载与代码结构介绍

目录 前言 微信小程序 1.微信小程序简单介绍 2.小程序与普通网页开发的区别 注册小程序开发帐号 微信小程序开发者工具下载 项目结构 1.小程序项目整体结构 2.小程序页面的组成部分 小程序组成部分 1. JSON 配置文件的作用 2. app.json 文件 3. project.config.jso…

【JaveWeb教程】(20) MySQL数据库开发之 基本查询、条件查询、聚合函数、分组查询、排序查询、分页查询 详细代码示例讲解

目录 1. 数据库操作-DQL1.1 介绍1.2 语法1.3 基本查询1.4 条件查询1.5 聚合函数1.6 分组查询1.7 排序查询1.8 分页查询1.9 案例1.9.1 案例一1.9.2 案例二 在上次学习的内容中,我们讲解了: 使用DDL语句来操作数据库以及表结构(数据库设计&…

2024.1.11

#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this);speechnew QTextToSpeech(this);id1startTimer(1000);//设置文本到中间ui->sys_label->setAlignment(Qt:…

华为鸿蒙凉了?谣言还是

华为鸿蒙系统凉了吗?我们从目前的一系列新闻来看。鸿蒙并没有凉,反而愈发强大。从下面的一些新闻事实可以看出华为鸿蒙已经和Android、ios形成竞争对手了。 1、华为宣布鸿蒙4.0的发布 2023年7月,华为开发者大会上正式宣布。华为发布了备受期…

如何计算指标波动贡献率?(附Pandas实现)

大家好,我是阿粥 “为什么这个月销售额提升了30%?” “为什么转化率又降了,同比竟然降低了42%,什么原因导致的呢?” 这些都是数据分析师在工作中经常会遇到的问题,甚至有些基础岗的数据分析师要花80%以上的…

2024.1.11 Kafka 消息队列,shell命令,核心原理

目录 一 . 消息队列 二. Kafka 三 . 启动命令 四 . Kafka的Shell 命令 五 . Kafka的核心原理 1. Topic的分区和副本机制 2 . 消息存储机制 和 查询机制 3. Kafka中生产者数据分发策略 六 . Kafka 之所以具有高速的读写性能,主要有以下几个原因 七. 笔记…

如何使用宝塔面板部署Inis博客并实现无公网ip环境远程访问

文章目录 前言1. Inis博客网站搭建1.1. Inis博客网站下载和安装1.2 Inis博客网站测试1.3 cpolar的安装和注册 2. 本地网页发布2.1 Cpolar临时数据隧道2.2 Cpolar稳定隧道(云端设置)2.3.Cpolar稳定隧道(本地设置) 3. 公网访问测试总…

2024,智能座舱不要再过度“装修”了!

文 | AUTO芯球 作者 | 雷慢 还记得2022年小鹏疲劳驾驶检测系统将小眼睛驾驶员识别为“开车睡觉”吗?驾驶员被扣了“智驾分”,你没听错,车主不光要焦虑驾照扣分的时候,还要焦虑被车子扣分。 雷慢还记得另一个奇葩事情是某问界车主…

Mondo备份linux操作系统为iso镜像 —— 筑梦之路

简介 Mondo Rescue(以下简称Mondo)可以说是Linux 下的Ghost,它可以将你的系统像照相一样备份至磁带,CD-R,CD-RW,NFS或硬盘分区。Mondo广泛支援LVM,RAID,ext2, ext3, JFS, XFS,Reise…