文章目录
- 引言
- M-P神经元模型
- 激活函数
- 多层前馈神经网络
- 误差逆传播算法
- 缓解过拟合化
- 结论
- 实验分析
引言
人工神经网络(Artificial Neural Networks,ANNs)作为一种模拟生物神经系统的计算模型,在模式识别、数据挖掘、图像处理等领域取得了显著的成功。其中,BP神经网络(Backpropagation Neural Network,BPNN)作为一种常见的前馈式神经网络,以其在模式学习和逼近函数方面的优越性受到广泛关注。BP神经网络不仅能够处理非线性关系,还能够通过训练不断调整网络参数,实现对复杂模型的逼近,具有较强的自适应性和泛化能力。
本文旨在深入探讨BP神经网络的基本原理和数学模型,通过对其公式的详细推导,为读者提供清晰的理论基础。此外,通过具体的举例应用,展示BP神经网络在实际问题中的有效性和应用前景。通过对BP神经网络的深入理解,我们可以更好地应用和优化该模型,推动人工智能领域的发展。
在神经网络研究的历史长河中,BP神经网络无疑是一个重要的里程碑,其不断演化和改进为解决实际问题提供了有力的工具。通过深入研究BP神经网络,我们有望更好地理解神经网络的内在机理,推动其在各个领域的广泛应用。在人工智能日益发展的今天,BP神经网络仍然是一个备受关注的研究方向,本文将为读者提供对其深入理解的途径和启发。
M-P神经元模型
在生物神经网络中,每个神经元与其他神经元相连接,当它“兴奋”时,就会向相连接的神经元发送化学物质,从而改变这些神经元内的电位;若某神经元的电位超过一个“阈值”,那么它就会被激活,即“兴奋”起来,向其他神经元发送化学物质。我们将上述所描述的情形抽象为下图所示(M-P神经元模型):
在这个模型中,神经元接受到来自 n n n个其他神经元传递过来的输入信号,这些输入信号通过带权的连接进行传递,神经元接受到的总输入值与神经元的阈值进行对比,然后通过”激活函数“处理以产生神经元的输出。
激活函数
理想中的激活函数如下图所示:
s g n ( x ) = { 1 , x ≥ 0 0 , x < 0 sgn(x)= \begin{cases} 1,\quad x\geq 0\\ 0, \quad x<0 \end{cases} sgn(x)={1,x≥00,x<0
显然“1”对应神经元兴奋、“0”对应神经元抑制。然而 s g n ( x ) sgn(x) sgn(x)数学性质不好,不具备连续性且不光滑。因此实际上我们采用 s i g m o i d sigmoid sigmoid函数作为激活函数,典型的 s i g m o i d sigmoid sigmoid函数如下图所示:
s i g m o i d ( x ) = 1 1 + e − x sigmoid(x)=\frac{1}{1+e^{-x}} sigmoid(x)=1+e−x1
然后将许多的神经元按一定的层次连接起来,就构成了一个神经网络。
多层前馈神经网络
常见的神经网络是形如下图所示的层级结构:
每层神经元与下一层神经元全连接,神经元之间不存在同层连接,也不存在跨层连接。这样的网络称为多层前馈神经网络。
误差逆传播算法
给定数据集 D = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . ( x m , y m ) } D=\{ (x_1,y_1),(x_2,y_2),...(x_m,y_m)\} D={(x1,y1),(x2,y2),...(xm,ym)}, x i ∈ ℜ d , y i ∈ ℜ l x_i\in \Re^d,y_i \in \Re^l xi∈ℜd,yi∈ℜl,即输入样例由 d d d个属性描述,输出样例由 l l l维实值向量。下图给出一个拥有 d d d个输入神经元、 l l l个输出神经元、 q q q个隐层神经元的多层前反馈神经网络。其中输出层第 j j j个神经元的阈值用 θ j \theta_j θj表示,隐层第 h h h个神经元的阈值用 γ h \gamma_h γh表示。输入层第 i i i个神经元与隐层第 h h h个神经元之间的连接权为 v i h v_{ih} vih,隐层第 h h h个神经元与输出层第 j j j个神经元之间的连接权为 w h j w_{hj} whj。记隐层第 h h h个神经元接收到的输入为 α h = ∑ i = 1 d v i h x i \alpha_h=\sum_{i=1}^dv_{ih}x_i αh=∑i=1dvihxi,输出层第 j j j个神经元接收到的输入为 β j = ∑ h = 1 q w h j b h \beta_j=\sum_{h=1}^qw_{hj}b_h βj=∑h=1qwhjbh。其中 b h b_h bh为隐层第 h h h个神经元的输出。
对训练集 ( x k , y k ) (x_k,y_k) (xk,yk),假定神经网络的输出为 y ^ j k = ( y ^ 1 k , y ^ 1 k , . . . , y ^ l k ) \hat y_j^k=(\hat y_1^k,\hat y_1^k,...,\hat y_l^k) y^jk=(y^1k,y^1k,...,y^lk)即
y ^ j k = f ( β j − θ j ) (1) \hat y_j^k=f(\beta_j-\theta_j) \tag{1} y^jk=f(βj−θj)(1)
则网络在 x k , y k x_k,y_k xk,yk上的均方误差为:
E k = 1 2 ∑ j = 1 l ( y ^ j k − y j k ) 2 (2) E_k=\frac{1}{2}\sum_{j=1}^l(\hat y_j^k-y_j^k)^2 \tag{2} Ek=21j=1∑l(y^jk−yjk)2(2)
其中 y ^ j k \hat y_j^k y^jk为神经网络模型输出, y j k y_j^k yjk为训练集实际样例输出。
故在上图网络中共有 ( d + l + 1 ) q + l (d+l+1)q+l (d+l+1)q+l个参数。BP是一个迭代学习算法,在迭代的每一轮中采用广义感知机学习规则对参数进行更新估计,任意参数 v v v的更新估计式为:
v ← v + Δ v (3) v\leftarrow v+\Delta v \tag{3} v←v+Δv(3)
以上图的BP网络中隐层到输出层的连接权 w h j w_{hj} whj为例来进行推导:
BP算法基于梯度下降法,以目标的负梯度方向对参数进行调整,对误差 E k E_k Ek,给定学习率 η \eta η,有:
Δ w h j = − η ∂ E k ∂ w h j (4) \Delta w_{hj}=-\eta \frac{\partial E_k}{\partial w_{hj}} \tag{4} Δwhj=−η∂whj∂Ek(4)
我们注意到 w h j w_{hj} whj先影响到第 j j j个输出层神经元的输入值 β j \beta_j βj,再影响到输出值 y ^ j k \hat y_j^k y^jk,最终影响到 E k E_k Ek,有:
∂ E k ∂ w h j = ∂ E k ∂ y ^ j k ⋅ ∂ y ^ j k ∂ β j ⋅ ∂ β j ∂ w h j (5) \frac{\partial E_k}{\partial w_{hj}}=\frac{\partial E_k}{\partial \hat y_j^k}\cdot \frac{\partial \hat y_j^k}{\partial \beta_j}\cdot \frac{\partial \beta_j}{\partial w_{hj}} \tag{5} ∂whj∂Ek=∂y^jk∂Ek⋅∂βj∂y^jk⋅∂whj∂βj(5)
根据 β j = ∑ h = 1 q w h j h h \beta_j=\sum_{h=1}^qw_{hj}h_h βj=∑h=1qwhjhh的定义,显然有:
∂ β j ∂ w h j = b h (6) \frac{\partial \beta_j}{\partial w_{hj}}=b_h \tag{6} ∂whj∂βj=bh(6)
又因为 s i g m o i d sigmoid sigmoid函数有一个很好的数学性质:
f ′ ( x ) = f ( x ) ( 1 − f ( x ) ) (7) f^\prime(x)=f(x)(1-f(x)) \tag{7} f′(x)=f(x)(1−f(x))(7)
根据式子(1)和(2),有:
g j = − ∂ E k ∂ y ^ j k ⋅ ∂ y ^ j k ∂ β j = − ( y ^ j k − y j k ) f ′ ( β j − θ j ) = y ^ j k ( 1 − y ^ j k ) ( y j k − y ^ j k ) (8) \begin{align*} g_j & = -\frac{\partial E_k}{\partial \hat y_j^k}\cdot \frac{\partial \hat y_j^k}{\partial \beta_j} \\ & = -(\hat y_j^k-y_j^k)f^\prime(\beta_j-\theta_j) \\ & = \hat y_j^k(1-\hat y_j^k)(y_j^k-\hat y_j^k) \end{align*} \tag{8} gj=−∂y^jk∂Ek⋅∂βj∂y^jk=−(y^jk−yjk)f′(βj−θj)=y^jk(1−y^jk)(yjk−y^jk)(8)
其中 E k = 1 2 ∑ j = 1 l ( y ^ j k − y j k ) 2 E_k=\frac{1}{2}\sum_{j=1}^l(\hat y_j^k-y_j^k)^2 Ek=21∑j=1l(y^jk−yjk)2,那么 ∂ E k ∂ y ^ j k = y ^ j k − y j k \frac{\partial E_k}{\partial \hat y_j^k}=\hat y_j^k-y_j^k ∂y^jk∂Ek=y^jk−yjk。 y ^ j k = f ( β j − θ j ) \hat y_j^k=f(\beta_j-\theta_j) y^jk=f(βj−θj),那么 ∂ y ^ j k ∂ β j = f ′ ( β j − θ j ) = f ( β j − θ j ) ⋅ ( 1 − f ( β j − θ j ) ) = y ^ j k ⋅ ( 1 − y ^ j k ) \frac{\partial \hat y_j^k}{\partial \beta_j}=f^\prime(\beta_j-\theta_j)=f(\beta_j-\theta_j)\cdot(1-f(\beta_j-\theta_j))=\hat y_j^k\cdot (1-\hat y_j^k) ∂βj∂y^jk=f′(βj−θj)=f(βj−θj)⋅(1−f(βj−θj))=y^jk⋅(1−y^jk)
将(6)和(8)带入(5)中有:
∂ E k ∂ w h j = g j ⋅ b h (9) \frac{\partial E_k}{\partial w_{hj}}=g_j\cdot b_h \tag{9} ∂whj∂Ek=gj⋅bh(9)
再将(9)带入(4)中,得到BP算法 中关于 w h j w_{hj} whj的更新公式:
Δ w h j = − η g j b h (10) \Delta w_{hj}=-\eta g_jb_h \tag{10} Δwhj=−ηgjbh(10)
同理可得:
Δ θ j = − η g j (11) \Delta\theta_j=-\eta g_j \tag{11} Δθj=−ηgj(11)
Δ v i h = η e h x i (12) \Delta v_{ih}=\eta e_hx_i \tag{12} Δvih=ηehxi(12)
Δ γ h = − η e h (13) \Delta \gamma_h=-\eta e_h \tag{13} Δγh=−ηeh(13)
其中
e h = − ∂ E k ∂ b h ⋅ ∂ b h ∂ α h = − ∑ j = 1 l ∂ E k ∂ β j ⋅ ∂ β j ∂ b h f ′ ( α h − γ h ) = ∑ j = 1 l w h j g j f ′ ( α h − γ h ) = b h ( 1 − b h ) ∑ j = 1 l w h j g j (14) \begin{align*} e_h & = -\frac{\partial E_k}{\partial b_h}\cdot \frac{\partial b_h}{\partial \alpha_h} \\ & = -\sum_{j=1}^l \frac{\partial E_k}{\partial \beta_j}\cdot\frac{\partial \beta_j}{\partial b_h}f^\prime(\alpha_h-\gamma_h) \\ & = \sum_{j=1}^lw_{hj}g_jf^\prime(\alpha_h-\gamma_h) \\ & = b_h(1-b_h)\sum_{j=1}^lw_{hj}g_j \end{align*} \tag{14} eh=−∂bh∂Ek⋅∂αh∂bh=−j=1∑l∂βj∂Ek⋅∂bh∂βjf′(αh−γh)=j=1∑lwhjgjf′(αh−γh)=bh(1−bh)j=1∑lwhjgj(14)
其中 b h b_h bh是隐层神经元的输出 b h = f ( α h − γ h ) b_h=f(\alpha_h-\gamma_h) bh=f(αh−γh), γ h \gamma_h γh是隐层神经元的阈值, α h \alpha_h αh是隐层神经元的输入。
直到所有参数调整至累计误差最小即:
E m i n = 1 m ∑ k = 1 m E k (15) E_{min}=\frac{1}{m}\sum_{k=1}^mE_k \tag{15} Emin=m1k=1∑mEk(15)
缓解过拟合化
由于BP神经网络强大的表示能力,BP神经网络经常遭遇过拟合化,其训练误差持续降低,但测试误差却可能上升。共有两种策略来缓解BP网络的过拟合化。
- 早停:基本思想是在训练过程中监测验证集(一部分未参与训练的数据)上的性能,并在验证集性能达到最优时停止训练,而不是继续训练直到训练误差降为零。
- 正则化:正则化通过修改损失函数,向优化过程中引入额外的惩罚项,从而限制模型的复杂性。这有助于防止神经网络对训练数据过度拟合。在神经网络中,L2(范数) 正则化的损失函数,则误差目标函数为:
E = λ 1 m ∑ k = 1 m E k + ( 1 − λ ) ∑ i w i 2 (16) E=\lambda\frac{1}{m}\sum_{k=1}^mE_k+(1-\lambda)\sum_{i}w_i^2 \tag{16} E=λm1k=1∑mEk+(1−λ)i∑wi2(16)
其中 λ ∈ ( 0 , 1 ) \lambda \in (0,1) λ∈(0,1),用来对经验风险和结构风险进行折中处理。其中经验风险为 1 m ∑ k = 1 m E k \frac{1}{m}\sum_{k=1}^mE_k m1∑k=1mEk,结构风险为 ∑ i w i 2 \sum_{i}w_i^2 ∑iwi2。
结论
在神经网络领域,BP神经网络是一种重要的前馈神经网络,以其在模式学习和逼近函数方面的优越性而备受关注。本文深入探讨了BP神经网络的基本原理和数学模型,通过对其公式的详细推导,为读者提供了清晰的理论基础。
文章首先介绍了M-P神经元模型,将其抽象为神经网络的基本组成单元。激活函数的选择是神经网络设计中关键的一步,文中提到了理想中的激活函数以及实际中常用的 s i g m o i d sigmoid sigmoid函数。
多层前馈神经网络的结构被详细介绍,说明了其层级结构和连接方式。这种结构的神经网络被广泛应用于各个领域,能够处理非线性关系,通过训练调整网络参数,实现对复杂模型的逼近,具有较强的自适应性和泛化能力。
误差逆传播算法是BP神经网络训练的核心,文章通过数学推导详细解释了权重和阈值的更新过程。梯度下降法是其中的关键步骤,通过计算误差对参数的偏导数,实现对参数的调整。
然后,文章提到了BP神经网络容易面临的问题之一,即过拟合。为了缓解过拟合,介绍了两种常用的方法:早停和正则化。早停通过在训练过程中监测验证集性能,及时停止训练,避免过度拟合。正则化通过修改损失函数引入额外的惩罚项,限制模型复杂性,有助于防止神经网络对训练数据过度拟合。
实验分析
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neural_network import MLPRegressor
from sklearn.metrics import mean_squared_error
import matplotlib.pyplot as plt# 读入数据集
data = pd.read_csv('data/predict_room_price.csv')
进行数据的预处理
# 特征和标签
X = data.drop('Price', axis=1)
y = data['Price']# 数据标准化
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)# 划分数据集
X_train, X_temp, y_train, y_temp = train_test_split(X_scaled, y, test_size=0.3, random_state=42)
X_valid, X_test, y_valid, y_test = train_test_split(X_temp, y_temp, test_size=0.5, random_state=42)
构建神经网络模型
# 创建BP神经网络模型
model = MLPRegressor(hidden_layer_sizes=(20, 20), max_iter=1000, random_state=42, alpha=0.01, learning_rate='adaptive')
训练、预测并评估模型性能
# 训练模型
model.fit(X_train, y_train)# 在验证集上预测
y_valid_pred = model.predict(X_valid)# 评估模型性能
valid_loss = mean_squared_error(y_valid, y_valid_pred)
print(f'Validation Loss: {valid_loss}')# 在测试集上预测
y_test_pred = model.predict(X_test)# 评估模型性能
test_loss = mean_squared_error(y_test, y_test_pred)
print(f'Test Loss: {test_loss}')# 绘制损失曲线
plt.plot(model.loss_curve_)
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Training Loss Curve')
plt.show()
Validation Loss: 429.78130878683345
Test Loss: 436.7118813730095
residuals = y_test - y_test_pred
plt.scatter(y_test, residuals)
plt.axhline(y=0, color='r', linestyle='--')
plt.xlabel('True Values')
plt.ylabel('Residuals')
plt.title('Residuals Plot on Test Set')
plt.show()
from sklearn.metrics import r2_scorer2_valid = r2_score(y_valid, y_valid_pred)
print(f'R2 Score on Validation Set: {r2_valid}')r2_test = r2_score(y_test, y_test_pred)
print(f'R2 Score on Test Set: {r2_test}')
R2 Score on Validation Set: 0.9939169086519464
R2 Score on Test Set: 0.9934083540996065
由上述评价指标可知:
-
残差图:
- 散点在区间[-80, 80]内,说明模型的预测相对较为准确,大多数样本的预测误差在这个范围内。
- 点集中在[-20, 20]上,表示大部分样本的残差(实际值与预测值之差)都集中在这个范围内,这也表明模型的整体性能较好。
-
Validation Loss 和 Test Loss:非常低的Validation Loss和Test Loss,说明模型在验证集和测试集上都取得了很好的性能。这表明模型对数据的拟合效果很好,预测值与实际值之间的误差很小。
-
R2 Score on Validation Set 和 Test Set:非常接近于1的R2 Score,表明模型对于验证集和测试集的解释方差非常高。R2 Score是一个用于评估模型拟合程度的指标,接近1表示模型能够很好地解释目标变量的变异性。
总体来说,根据残差图、Validation Loss、Test Loss以及R2 Score的结果,模型表现出色,能够很好地拟合数据并具有较高的泛化能力。