今日内容
- 110.平衡二叉树
- 257. 二叉树的所有路径
- 404.左叶子之和
110.平衡二叉树 - Easy
题目链接:. - 力扣(LeetCode)
给定一个二叉树,判断它是否是高度平衡的二叉树。
本题中,一棵高度平衡二叉树定义为:
一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1 。
思路:递归法,注意区分深度和高度
class Solution {
public:// 返回以该节点为根节点的二叉树的高度,如果不是平衡二叉树了则返回-1int getHeight(TreeNode* node) {if (node == NULL) {return 0;}int leftHeight = getHeight(node->left);if (leftHeight == -1) return -1;int rightHeight = getHeight(node->right);if (rightHeight == -1) return -1;return abs(leftHeight - rightHeight) > 1 ? -1 : 1 + max(leftHeight, rightHeight);}bool isBalanced(TreeNode* root) {return getHeight(root) == -1 ? false : true;}
};
257. 二叉树的所有路径 - Easy
题目链接:力扣-257. 二叉树的所有路径
给你一个二叉树的根节点
root
,按 任意顺序 ,返回所有从根节点到叶子节点的路径。叶子节点 是指没有子节点的节点。
思路:递归法,其实实现的是回溯
class Solution {
private:void traversal(TreeNode* cur, vector<int>& path, vector<string>& result) {path.push_back(cur->val); // 中,中为什么写在这里,因为最后一个节点也要加入到path中 // 这才到了叶子节点if (cur->left == NULL && cur->right == NULL) {string sPath;for (int i = 0; i < path.size() - 1; i++) {sPath += to_string(path[i]);sPath += "->";}sPath += to_string(path[path.size() - 1]);result.push_back(sPath);return;}if (cur->left) { // 左 traversal(cur->left, path, result);path.pop_back(); // 回溯}if (cur->right) { // 右traversal(cur->right, path, result);path.pop_back(); // 回溯}}public:vector<string> binaryTreePaths(TreeNode* root) {vector<string> result;vector<int> path;if (root == NULL) return result;traversal(root, path, result);return result;}
};
404.左叶子之和 - Easy
题目链接:力扣-404. 左叶子之和
给定二叉树的根节点
root
,返回所有左叶子之和。
思路:递归法
class Solution {
public:int sumOfLeftLeaves(TreeNode* root) {if (root == NULL) return 0;if (root->left == NULL && root->right== NULL) return 0;int leftValue = sumOfLeftLeaves(root->left); // 左if (root->left && !root->left->left && !root->left->right) { // 左子树就是一个左叶子的情况leftValue = root->left->val;}int rightValue = sumOfLeftLeaves(root->right); // 右int sum = leftValue + rightValue; // 中return sum;}
};
今日总结
第一题注意区分高度和深度,第二题回溯搞得不是很明白