AI绘画软件Stable Diffusion模型/Lora/VAE文件存放位置

型下载说明(下载模型后输入对应参数即可生成)

建议直接去civitai.com找模型,如果无法找到可以在幕后模型区找也可以去,

下载好后放入对应的文件夹。进入127.0.0.1:7680 左上角刷新即可看到新的模型。

模型种类

大模型

大模型特指标准的latent-diffusion模型。拥有完整的TextEncoderU-NetVAE

由于想要训练一个大模型非常困难,需要极高的显卡算力,所以更多的人选择去训练小型模型。

CKPT

CKPT格式的全称为CheckPoint(检查点),完整模型的常见格式,模型体积较大,一般单个模型的大小在7GB左右。

文件位置:该模型一般放置在*\stable-diffusion-webui\models\Stable-diffusion目录内。

小模型

小模型一般都是截取大模型的某一特定部分,虽然不如大模型能力那样完整,但是小而精,因为训练的方向各为明确,所以在生成特定内容的情况下,效果更佳。

常见微调模型:Textual inversion (Embedding)HypernetworkVAELoRA等,下面一一进行介绍。

VAE

全称:VAE全称Variational autoencoder。变分自编码器,负责将潜空间的数据转换为正常图像。

后缀格式:后缀一般为.pt格式。

功能描述:类似于滤镜一样的东西,他会影响出图的画面的色彩和某些极其微小的细节。大模型本身里面自带 VAE ,但是并不是所有大模型都适合使用VAE,VAE最好搭配指定的模型,避免出现反效果,降低生成质量。

使用方法:设置 -> Stable-Diffusion -> 模型的 VAE (SD VAE),在该选项框内选择VAE模型。

文件位置:该模型一般放置在*\stable-diffusion-webui\models\VAE目录内。

AI绘画软件Stable Diffusion模型/Lora/VAE文件存放位置插图2

Embedding

常见格式为ptpngwebp格式,文件体积一般只有几KB。

风格模型,即只针对一个风格或一个主题,并将其作为一个模块在生成画作时使用对应TAG在Prompt进行调用。

使用方法:例如本站用数百张海绵宝宝训练了一个Embedding模型,然后将该模型命名为HMBaby,在使用AI绘图时加载名称为HMBaby的Embedding模型,在使用Promat时加入HMBaby的Tag关键字,SD将会自动调用该模型参与AI创作。

文件位置:该模型一般放置在*\stable-diffusion-webui\embeddings目录内。

Hypernetwork

一般为.pt后缀格式,大小一般在几十兆左右。这种模型的可自定义的参数非常之多。

使用方法:使用方法:在SD的文生图或图生图界面内的生成按钮下,可以看到一个红色的图标,该图标名为Show extra networks(显示额外网络),点击该红色图标将会在本页弹出一个面板,在该面板中可以看到Hypernetwork选项卡

文件位置:该模型一般放置在*\stable-diffusion-webui\models\hypernetworks目录内。

LoRA

LoRA的模型分两种,一种是基础模型,一种是变体。

目前最新版本的Stable-diffusion-WebUI原生支持Lora模型库,非常方便使用。

使用方法:在SD的文生图或图生图界面内的生成按钮下,可以看到一个红色的图标,该图标名为Show extra networks(显示额外网络),点击该红色图标将会在本页弹出一个面板,在该面板中可以看到Lora选项卡,在该选项卡中可以自由选择Lora模型,点击想要使用的模型将会自动在Prompt文本框中插入该Lora模型的Tag名称。

AI绘画软件Stable Diffusion模型/Lora/VAE文件存放位置插图3

基础模型

名称一般为chilloutmix*,后缀可能为safetensors或CKPT。

基础模型存放位置:*\stable-diffusion-webui\models\Stable-diffusion目录内。

变体模型

变体模型存放位置:*\stable-diffusion-webui\models\Lora目录内。

是放在extensions下的,sd-webui-additional-networks文件夹下的models文件夹里的lora!!

不是主文件夹下的models,别放错了!!!

模型后缀解析

格式描述
.ckptPytorch的标准模型保存格式,容易遭受Pickle反序列化攻击。
.ptPytorch的标准模型保存格式,容易遭受Pickle反序列化攻击。
.pthPytorch的标准模型保存格式,容易遭受Pickle反序列化攻击。
.safetensorssafetensors格式可与Pytorch的模型相互格式转换,内容数据无区别。
其它webui 特殊模型保存方法:PNG、WEBP图片格式。

Safetensors格式

  • Safetensors格式所生成的内容与ckpt等格式完全一致(包括NFSW)。
  • Safetensors格式拥有更高的安全性,
  • Safetensors比ckpt格式加载速度更快
  • 该格式必须在2023年之后的Stable Diffusion内才可以使用,在此之间的SD版本内使用将无法识别。
  • Safetensors格式由Huggingface推出,将会逐渐取代ckpt、pt、pth等格式,使用方法上与其它格式完全一致。

Pickle反序列化攻击

可以将字节流转换为一个对象,但是当我们程序接受任意输入时,如果用户的输入包含一些恶意的序列化数据,然后这些数据在服务器上被反序列化,服务器是在将用户的输入转换为一个对象,之后服务器就会被任意代码执行。

模型训练

Embedding (Textual inversion)

可训练:画风√ 人物√ | 推荐训练:人物

配置要求:显存6GB以上。

训练速度:中等 | 训练难度:中等

综合评价:☆☆☆

Hypernetwork

可训练:画风√ 人物√ | 推荐训练:画风

配置要求:显存6GB以上。

训练速度:中等 | 训练难度:难

综合评价:☆☆

评价:非常强大的一种模型,但是想训练好很难,不推荐训练。

LoRA

可训练:画风? 人物√  概念√ | 推荐训练:人物

配置要求:显存8GB以上。

训练速度:快 | 训练难度:简单

综合评价:☆☆☆☆

评价:非常好训练 好出效果的人物训练,配置要求低,图要求少。

备注:LoRA 本身也应该归类到 Dreambooth,但是这里还是分开讲。

Dreambooth / Native Train

可训练:画风√ 人物√ 概念√ | 推荐训练:Dreambooth 推荐人物,Native Train 推荐画风

配置要求:显存12GB以上。

训练速度:慢 | 训练难度:可以简单可以很难

综合评价:☆☆☆☆☆

评价:微调大模型,非常强大的训练方式,但是使用上会不那么灵活,推荐训练画风用,人物使用 LoRA 训练。

DreamArtist

显存要求6GB(4GB应该也可以),只需要(也只能)使用一张图完成训练,一般用于训练人物(画风没法抓住主次),优点是训练要求极低,成功率高,缺点是容易过拟合,并且不像Embedding可以跨模型应用,这个训练时使用什么模型应用时就要用什么,哪怕调一下CLIP参数生成结果都会完全跑飞。推荐每250步保存模型,后期用X/Y图脚本进行挑选。

模型后缀

仓库内一般存在多个模型文件,文件名后缀各不相同,这里简单介绍下文件名常见后缀及其含义:

ControlNet

ControlNet比之前的img2img要更加的精准和有效,可以直接提取画面的构图,人物的姿势和画
面的深度信息等等。有了它的帮助,就不用频繁的用提示词来碰运气,抽卡式的创作了。

instruct-pix2pix

在 stable-diffusion-webui 中的img2img专用模型 自然语言指导图像编辑 生成速度极快 ,仅需要几秒的时间。

FP16、FP32

代表着精度不同,精度越高所需显存越大,效果也会有所提升。

512|768

代表着默认训练分辨率时512X512还是768X768,理论上默认分辨率高生成效果也会相应更好。

inpaint

代表着是专门为imgtoimg中的inpaint功能训练的模型,在做inpaint时效果会相对来说较好。

depth

代表此模型是能包含处理图片深度信息并进行inpainting和img2img的

EMA

模型文件名中带EMA一般意味着这是个用来继续训练的模型,文件大小相对较大

与之相比,正常的、大小相当较小的那个模型文件是为了做推理生成的

对于那些有兴趣真正理解发生了什么的人来说,应该使用EMA模型来进行推理

小模型实际上有EMA权重。而大模型是一个 “完整版”,既有EMA权重,也有标准权重。因此,如果你想训练这个模型,你应该加载完整的模型,并使用use_ema=False。

EMA权重

就像你作为一个学生在接受训练时,也许你会在最后一次考试表现较差,或者决定作弊并记住答案。所以一般来说,通过使用考试分数的平均值,你可以更好地了解到学生的表现,

由于你不关心幼儿园时的分数,如果你只考虑去年的分数(即只用一组最近的实际数据值来预测),你会得到MA(moving average 移动平均数). 而如果你保留整个历史,但给最近的分数以更大的权重,则会得到EMA(exponential moving average 指数移动平均数)。

这对具有不稳定训练动态的GANs来说是一个非常重要的技巧,但对扩散模型来说,它其实并不是那么重要。

VAE

VAE模型文件并不能和正常模型文件一样独立完成图片生成。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/343905.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【设计模式-04】Factory工厂模式

简要描述 简单工厂静态工厂工厂方法 FactoryMethod 产品维度扩展 抽象工厂 产品一族进行扩展Spring IOC 一、工厂的定义 任何可以产生对象的方法或类,都可以称之为工厂单例也是一种工厂不可咬文嚼字,死扣概念为什么有了new之后,还要有工厂&am…

深度学习在工地安全帽识别技术的应用与展望

当我们谈论“工地安全帽识别”时,实际上我们在探讨的是如何利用深度学习图像识别技术来提高建筑工地的安全性。这一技术的应用可以显著提高工地安全管理的效率和有效性,是现代建筑工程管理中不可或缺的一部分。以测评的北京富维图像的工地安全帽识别为例…

error: undefined reference to ‘cv::imread(std::__ndk1::basic_string<char

使用android studio编译项目时,由于用到了 cv::imread()函数,编译时却报错找不到该函数的定义。 cv::imread一般是在highgui.hpp中定义,因此我加上了该头文件: #include “opencv2/highgui/highgui.hpp” 但…

基于博弈树的开源五子棋AI教程[3 极大极小搜索]

基于博弈树的开源五子棋AI教程[3 极大极小搜索] 引子极大极小搜索原理alpha-beta剪枝负极大搜索尾记 引子 极大极小搜索是博弈树搜索中最常用的算法,广泛应用于各类零和游戏中,例如象棋,围棋等棋类游戏。算法思想也是合乎人类的思考逻辑的&a…

视频转码:掌握mp4视频格式转FLV视频的技巧,视频批量剪辑方法

在多媒体时代,视频格式的转换成为一种常见的需求。把MP4格式转换为FLV格式,FLV格式的视频文件通常具有较小的文件大小,同时保持了较好的视频质量。批量剪辑视频的方法能大大提高工作效率。下面来看云炫AI智剪如何进行MP4到FLV的转码&#xff…

数据科学竞赛平台推荐

✅作者简介:人工智能专业本科在读,喜欢计算机与编程,写博客记录自己的学习历程。 🍎个人主页:小嗷犬的个人主页 🍊个人网站:小嗷犬的技术小站 🥭个人信条:为天地立心&…

TS2307: Cannot find module ‘./App.vue‘ or its corresponding type declarations.

目录 1. 问题描述2. 解决方案一:VSCode Volar(官方推荐)3. 解决方案二:WebStorm 2023.2 (官方推荐)4. 解决方案三:禁用严格类型检查选项(不推荐)5. 解决方案四&#xff…

【Python机器学习】深度学习——调参

先用MLPClassifier应用到two_moons数据集上: from sklearn.neural_network import MLPClassifier from sklearn.datasets import make_moons from sklearn.model_selection import train_test_split import mglearn import matplotlib.pyplot as pltplt.rcParams[f…

xcode安装及运行源码

抖音教学视频 目录 1、xcode 介绍 2、xcode 下载 3、xocde 运行ios源码 4、快捷键 1、xcode 介绍 Xcode 是运行在操作系统Mac OS X上的集成开发工具(IDE),由Apple Inc开发。Xcode是开发 macOS 和 iOS 应用程序的最快捷的方式。Xcode 具有…

web网页首页布局

效果展示&#xff1a; html代码&#xff1a; <!doctype html> <html> <head><meta charset"utf-8"><meta http-equiv"X-UA-Compatible" content"IEedge,chrome1"> <meta name"viewport" content&qu…

Nginx安装http2和ssl模块

Nginx安装http2和ssl模块 Nginx在执行默认安装命令的时候&#xff0c;并不会编译启用ngx_http_v2_module模块。故在修改Nginx配置文件启用http2.0协议的时候会报错。 一.检查Nginx安装了哪些模块 #进入Nginx的安装目录 cd /usr/local/nginx #执行命令查看安装了哪些模块 ./sbi…

Pytorch基础:数据读取与预处理——调用PyTorch官方数据集

数据读取与预处理——调用PyTorch官方数据集 1. 从网络端下载 FashionMNIST 数据集到本地2. 数据集可视化 1. 从网络端下载 FashionMNIST 数据集到本地 (base) PS C:\Users\孙明阳> conda activate yang (yang) PS C:\Users\孙明阳> python Python 3.11.5 | packaged by…