C++力扣题目106,105--中序和后序,前序和中序遍历构造二叉树

106.从中序与后序遍历序列构造二叉树

力扣题目链接(opens new window)

根据一棵树的中序遍历与后序遍历构造二叉树。

注意: 你可以假设树中没有重复的元素。

例如,给出

  • 中序遍历 inorder = [9,3,15,20,7]
  • 后序遍历 postorder = [9,15,7,20,3] 返回如下的二叉树:

106. 从中序与后序遍历序列构造二叉树1

思路

首先回忆一下如何根据两个顺序构造一个唯一的二叉树,相信理论知识大家应该都清楚,就是以 后序数组的最后一个元素为切割点,先切中序数组,根据中序数组,反过来再切后序数组。一层一层切下去,每次后序数组最后一个元素就是节点元素。

如果让我们肉眼看两个序列,画一棵二叉树的话,应该分分钟都可以画出来。

流程如图:

106.从中序与后序遍历序列构造二叉树

那么代码应该怎么写呢?

说到一层一层切割,就应该想到了递归。

来看一下一共分几步:

  • 第一步:如果数组大小为零的话,说明是空节点了。

  • 第二步:如果不为空,那么取后序数组最后一个元素作为节点元素。

  • 第三步:找到后序数组最后一个元素在中序数组的位置,作为切割点

  • 第四步:切割中序数组,切成中序左数组和中序右数组 (顺序别搞反了,一定是先切中序数组)

  • 第五步:切割后序数组,切成后序左数组和后序右数组

  • 第六步:递归处理左区间和右区间

不难写出如下代码:(先把框架写出来)

TreeNode* traversal (vector<int>& inorder, vector<int>& postorder) {// 第一步if (postorder.size() == 0) return NULL;// 第二步:后序遍历数组最后一个元素,就是当前的中间节点int rootValue = postorder[postorder.size() - 1];TreeNode* root = new TreeNode(rootValue);// 叶子节点if (postorder.size() == 1) return root;// 第三步:找切割点int delimiterIndex;for (delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++) {if (inorder[delimiterIndex] == rootValue) break;}// 第四步:切割中序数组,得到 中序左数组和中序右数组// 第五步:切割后序数组,得到 后序左数组和后序右数组// 第六步root->left = traversal(中序左数组, 后序左数组);root->right = traversal(中序右数组, 后序右数组);return root;
}

难点大家应该发现了,就是如何切割,以及边界值找不好很容易乱套。

此时应该注意确定切割的标准,是左闭右开,还有左开右闭,还是左闭右闭,这个就是不变量,要在递归中保持这个不变量。

在切割的过程中会产生四个区间,把握不好不变量的话,一会左闭右开,一会左闭右闭,必然乱套!

我在数组:每次遇到二分法,都是一看就会,一写就废 (opens new window)和数组:这个循环可以转懵很多人! (opens new window)中都强调过循环不变量的重要性,在二分查找以及螺旋矩阵的求解中,坚持循环不变量非常重要,本题也是。

首先要切割中序数组,为什么先切割中序数组呢?

切割点在后序数组的最后一个元素,就是用这个元素来切割中序数组的,所以必要先切割中序数组。

中序数组相对比较好切,找到切割点(后序数组的最后一个元素)在中序数组的位置,然后切割,如下代码中我坚持左闭右开的原则:

// 找到中序遍历的切割点
int delimiterIndex;
for (delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++) {if (inorder[delimiterIndex] == rootValue) break;
}// 左闭右开区间:[0, delimiterIndex)
vector<int> leftInorder(inorder.begin(), inorder.begin() + delimiterIndex);
// [delimiterIndex + 1, end)
vector<int> rightInorder(inorder.begin() + delimiterIndex + 1, inorder.end() );

接下来就要切割后序数组了。

首先后序数组的最后一个元素指定不能要了,这是切割点 也是 当前二叉树中间节点的元素,已经用了。

后序数组的切割点怎么找?

后序数组没有明确的切割元素来进行左右切割,不像中序数组有明确的切割点,切割点左右分开就可以了。

此时有一个很重的点,就是中序数组大小一定是和后序数组的大小相同的(这是必然)。

中序数组我们都切成了左中序数组和右中序数组了,那么后序数组就可以按照左中序数组的大小来切割,切成左后序数组和右后序数组。

代码如下:

// postorder 舍弃末尾元素,因为这个元素就是中间节点,已经用过了
postorder.resize(postorder.size() - 1);// 左闭右开,注意这里使用了左中序数组大小作为切割点:[0, leftInorder.size)
vector<int> leftPostorder(postorder.begin(), postorder.begin() + leftInorder.size());
// [leftInorder.size(), end)
vector<int> rightPostorder(postorder.begin() + leftInorder.size(), postorder.end());

此时,中序数组切成了左中序数组和右中序数组,后序数组切割成左后序数组和右后序数组。

接下来可以递归了,代码如下:

root->left = traversal(leftInorder, leftPostorder);
root->right = traversal(rightInorder, rightPostorder);

完整代码如下:

class Solution {
private:TreeNode* traversal (vector<int>& inorder, vector<int>& postorder) {if (postorder.size() == 0) return NULL;// 后序遍历数组最后一个元素,就是当前的中间节点int rootValue = postorder[postorder.size() - 1];TreeNode* root = new TreeNode(rootValue);// 叶子节点if (postorder.size() == 1) return root;// 找到中序遍历的切割点int delimiterIndex;for (delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++) {if (inorder[delimiterIndex] == rootValue) break;}// 切割中序数组// 左闭右开区间:[0, delimiterIndex)vector<int> leftInorder(inorder.begin(), inorder.begin() + delimiterIndex);// [delimiterIndex + 1, end)vector<int> rightInorder(inorder.begin() + delimiterIndex + 1, inorder.end() );// postorder 舍弃末尾元素postorder.resize(postorder.size() - 1);// 切割后序数组// 依然左闭右开,注意这里使用了左中序数组大小作为切割点// [0, leftInorder.size)vector<int> leftPostorder(postorder.begin(), postorder.begin() + leftInorder.size());// [leftInorder.size(), end)vector<int> rightPostorder(postorder.begin() + leftInorder.size(), postorder.end());root->left = traversal(leftInorder, leftPostorder);root->right = traversal(rightInorder, rightPostorder);return root;}
public:TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {if (inorder.size() == 0 || postorder.size() == 0) return NULL;return traversal(inorder, postorder);}
};

相信大家自己就算是思路清晰, 代码写出来一定是各种问题,所以一定要加日志来调试,看看是不是按照自己思路来切割的,不要大脑模拟,那样越想越糊涂。

加了日志的代码如下:(加了日志的代码不要在leetcode上提交,容易超时)

class Solution {
private:TreeNode* traversal (vector<int>& inorder, vector<int>& postorder) {if (postorder.size() == 0) return NULL;int rootValue = postorder[postorder.size() - 1];TreeNode* root = new TreeNode(rootValue);if (postorder.size() == 1) return root;int delimiterIndex;for (delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++) {if (inorder[delimiterIndex] == rootValue) break;}vector<int> leftInorder(inorder.begin(), inorder.begin() + delimiterIndex);vector<int> rightInorder(inorder.begin() + delimiterIndex + 1, inorder.end() );postorder.resize(postorder.size() - 1);vector<int> leftPostorder(postorder.begin(), postorder.begin() + leftInorder.size());vector<int> rightPostorder(postorder.begin() + leftInorder.size(), postorder.end());// 以下为日志cout << "----------" << endl;cout << "leftInorder :";for (int i : leftInorder) {cout << i << " ";}cout << endl;cout << "rightInorder :";for (int i : rightInorder) {cout << i << " ";}cout << endl;cout << "leftPostorder :";for (int i : leftPostorder) {cout << i << " ";}cout << endl;cout << "rightPostorder :";for (int i : rightPostorder) {cout << i << " ";}cout << endl;root->left = traversal(leftInorder, leftPostorder);root->right = traversal(rightInorder, rightPostorder);return root;}
public:TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {if (inorder.size() == 0 || postorder.size() == 0) return NULL;return traversal(inorder, postorder);}
};


 

此时应该发现了,如上的代码性能并不好,因为每层递归定义了新的vector(就是数组),既耗时又耗空间,但上面的代码是最好理解的,为了方便读者理解,所以用如上的代码来讲解。

下面给出用下标索引写出的代码版本:(思路是一样的,只不过不用重复定义vector了,每次用下标索引来分割)

class Solution {
private:// 中序区间:[inorderBegin, inorderEnd),后序区间[postorderBegin, postorderEnd)TreeNode* traversal (vector<int>& inorder, int inorderBegin, int inorderEnd, vector<int>& postorder, int postorderBegin, int postorderEnd) {if (postorderBegin == postorderEnd) return NULL;int rootValue = postorder[postorderEnd - 1];TreeNode* root = new TreeNode(rootValue);if (postorderEnd - postorderBegin == 1) return root;int delimiterIndex;for (delimiterIndex = inorderBegin; delimiterIndex < inorderEnd; delimiterIndex++) {if (inorder[delimiterIndex] == rootValue) break;}// 切割中序数组// 左中序区间,左闭右开[leftInorderBegin, leftInorderEnd)int leftInorderBegin = inorderBegin;int leftInorderEnd = delimiterIndex;// 右中序区间,左闭右开[rightInorderBegin, rightInorderEnd)int rightInorderBegin = delimiterIndex + 1;int rightInorderEnd = inorderEnd;// 切割后序数组// 左后序区间,左闭右开[leftPostorderBegin, leftPostorderEnd)int leftPostorderBegin =  postorderBegin;int leftPostorderEnd = postorderBegin + delimiterIndex - inorderBegin; // 终止位置是 需要加上 中序区间的大小size// 右后序区间,左闭右开[rightPostorderBegin, rightPostorderEnd)int rightPostorderBegin = postorderBegin + (delimiterIndex - inorderBegin);int rightPostorderEnd = postorderEnd - 1; // 排除最后一个元素,已经作为节点了root->left = traversal(inorder, leftInorderBegin, leftInorderEnd,  postorder, leftPostorderBegin, leftPostorderEnd);root->right = traversal(inorder, rightInorderBegin, rightInorderEnd, postorder, rightPostorderBegin, rightPostorderEnd);return root;}
public:TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {if (inorder.size() == 0 || postorder.size() == 0) return NULL;// 左闭右开的原则return traversal(inorder, 0, inorder.size(), postorder, 0, postorder.size());}
};

那么这个版本写出来依然要打日志进行调试,打日志的版本如下:(该版本不要在leetcode上提交,容易超时

class Solution {
private:TreeNode* traversal (vector<int>& inorder, int inorderBegin, int inorderEnd, vector<int>& postorder, int postorderBegin, int postorderEnd) {if (postorderBegin == postorderEnd) return NULL;int rootValue = postorder[postorderEnd - 1];TreeNode* root = new TreeNode(rootValue);if (postorderEnd - postorderBegin == 1) return root;int delimiterIndex;for (delimiterIndex = inorderBegin; delimiterIndex < inorderEnd; delimiterIndex++) {if (inorder[delimiterIndex] == rootValue) break;}// 切割中序数组// 左中序区间,左闭右开[leftInorderBegin, leftInorderEnd)int leftInorderBegin = inorderBegin;int leftInorderEnd = delimiterIndex;// 右中序区间,左闭右开[rightInorderBegin, rightInorderEnd)int rightInorderBegin = delimiterIndex + 1;int rightInorderEnd = inorderEnd;// 切割后序数组// 左后序区间,左闭右开[leftPostorderBegin, leftPostorderEnd)int leftPostorderBegin =  postorderBegin;int leftPostorderEnd = postorderBegin + delimiterIndex - inorderBegin; // 终止位置是 需要加上 中序区间的大小size// 右后序区间,左闭右开[rightPostorderBegin, rightPostorderEnd)int rightPostorderBegin = postorderBegin + (delimiterIndex - inorderBegin);int rightPostorderEnd = postorderEnd - 1; // 排除最后一个元素,已经作为节点了cout << "----------" << endl;cout << "leftInorder :";for (int i = leftInorderBegin; i < leftInorderEnd; i++) {cout << inorder[i] << " ";}cout << endl;cout << "rightInorder :";for (int i = rightInorderBegin; i < rightInorderEnd; i++) {cout << inorder[i] << " ";}cout << endl;cout << "leftpostorder :";for (int i = leftPostorderBegin; i < leftPostorderEnd; i++) {cout << postorder[i] << " ";}cout << endl;cout << "rightpostorder :";for (int i = rightPostorderBegin; i < rightPostorderEnd; i++) {cout << postorder[i] << " ";}cout << endl;root->left = traversal(inorder, leftInorderBegin, leftInorderEnd,  postorder, leftPostorderBegin, leftPostorderEnd);root->right = traversal(inorder, rightInorderBegin, rightInorderEnd, postorder, rightPostorderBegin, rightPostorderEnd);return root;}
public:TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {if (inorder.size() == 0 || postorder.size() == 0) return NULL;return traversal(inorder, 0, inorder.size(), postorder, 0, postorder.size());}
};

给定两个整数数组 preorder 和 inorder ,其中 preorder 是二叉树的先序遍历, inorder 是同一棵树的中序遍历,请构造二叉树并返回其根节点。

示例 1:

输入: preorder = [3,9,20,15,7], inorder = [9,3,15,20,7]
输出: [3,9,20,null,null,15,7]

示例 2:

输入: preorder = [-1], inorder = [-1]
输出: [-1]

 

思路

本题和106是一样的道理。

我就直接给出代码了。

带日志的版本C++代码如下: (带日志的版本仅用于调试,不要在leetcode上提交,会超时

class Solution {
private:TreeNode* traversal (vector<int>& inorder, int inorderBegin, int inorderEnd, vector<int>& preorder, int preorderBegin, int preorderEnd) {if (preorderBegin == preorderEnd) return NULL;int rootValue = preorder[preorderBegin]; // 注意用preorderBegin 不要用0TreeNode* root = new TreeNode(rootValue);if (preorderEnd - preorderBegin == 1) return root;int delimiterIndex;for (delimiterIndex = inorderBegin; delimiterIndex < inorderEnd; delimiterIndex++) {if (inorder[delimiterIndex] == rootValue) break;}// 切割中序数组// 中序左区间,左闭右开[leftInorderBegin, leftInorderEnd)int leftInorderBegin = inorderBegin;int leftInorderEnd = delimiterIndex;// 中序右区间,左闭右开[rightInorderBegin, rightInorderEnd)int rightInorderBegin = delimiterIndex + 1;int rightInorderEnd = inorderEnd;// 切割前序数组// 前序左区间,左闭右开[leftPreorderBegin, leftPreorderEnd)int leftPreorderBegin =  preorderBegin + 1;int leftPreorderEnd = preorderBegin + 1 + delimiterIndex - inorderBegin; // 终止位置是起始位置加上中序左区间的大小size// 前序右区间, 左闭右开[rightPreorderBegin, rightPreorderEnd)int rightPreorderBegin = preorderBegin + 1 + (delimiterIndex - inorderBegin);int rightPreorderEnd = preorderEnd;cout << "----------" << endl;cout << "leftInorder :";for (int i = leftInorderBegin; i < leftInorderEnd; i++) {cout << inorder[i] << " ";}cout << endl;cout << "rightInorder :";for (int i = rightInorderBegin; i < rightInorderEnd; i++) {cout << inorder[i] << " ";}cout << endl;cout << "leftPreorder :";for (int i = leftPreorderBegin; i < leftPreorderEnd; i++) {cout << preorder[i] << " ";}cout << endl;cout << "rightPreorder :";for (int i = rightPreorderBegin; i < rightPreorderEnd; i++) {cout << preorder[i] << " ";}cout << endl;root->left = traversal(inorder, leftInorderBegin, leftInorderEnd,  preorder, leftPreorderBegin, leftPreorderEnd);root->right = traversal(inorder, rightInorderBegin, rightInorderEnd, preorder, rightPreorderBegin, rightPreorderEnd);return root;}public:TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {if (inorder.size() == 0 || preorder.size() == 0) return NULL;return traversal(inorder, 0, inorder.size(), preorder, 0, preorder.size());}
};


 

105.从前序与中序遍历序列构造二叉树,最后版本,C++代码:

class Solution {
private:TreeNode* traversal (vector<int>& inorder, int inorderBegin, int inorderEnd, vector<int>& preorder, int preorderBegin, int preorderEnd) {if (preorderBegin == preorderEnd) return NULL;int rootValue = preorder[preorderBegin]; // 注意用preorderBegin 不要用0TreeNode* root = new TreeNode(rootValue);if (preorderEnd - preorderBegin == 1) return root;int delimiterIndex;for (delimiterIndex = inorderBegin; delimiterIndex < inorderEnd; delimiterIndex++) {if (inorder[delimiterIndex] == rootValue) break;}// 切割中序数组// 中序左区间,左闭右开[leftInorderBegin, leftInorderEnd)int leftInorderBegin = inorderBegin;int leftInorderEnd = delimiterIndex;// 中序右区间,左闭右开[rightInorderBegin, rightInorderEnd)int rightInorderBegin = delimiterIndex + 1;int rightInorderEnd = inorderEnd;// 切割前序数组// 前序左区间,左闭右开[leftPreorderBegin, leftPreorderEnd)int leftPreorderBegin =  preorderBegin + 1;int leftPreorderEnd = preorderBegin + 1 + delimiterIndex - inorderBegin; // 终止位置是起始位置加上中序左区间的大小size// 前序右区间, 左闭右开[rightPreorderBegin, rightPreorderEnd)int rightPreorderBegin = preorderBegin + 1 + (delimiterIndex - inorderBegin);int rightPreorderEnd = preorderEnd;root->left = traversal(inorder, leftInorderBegin, leftInorderEnd,  preorder, leftPreorderBegin, leftPreorderEnd);root->right = traversal(inorder, rightInorderBegin, rightInorderEnd, preorder, rightPreorderBegin, rightPreorderEnd);return root;}public:TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {if (inorder.size() == 0 || preorder.size() == 0) return NULL;// 参数坚持左闭右开的原则return traversal(inorder, 0, inorder.size(), preorder, 0, preorder.size());}
};

#思考题

前序和中序可以唯一确定一棵二叉树。

后序和中序可以唯一确定一棵二叉树。

那么前序和后序可不可以唯一确定一棵二叉树呢?

前序和后序不能唯一确定一棵二叉树!,因为没有中序遍历无法确定左右部分,也就是无法分割。

举一个例子:

106.从中序与后序遍历序列构造二叉树2

tree1 的前序遍历是[1 2 3], 后序遍历是[3 2 1]。

tree2 的前序遍历是[1 2 3], 后序遍历是[3 2 1]。

那么tree1 和 tree2 的前序和后序完全相同,这是一棵树么,很明显是两棵树!

所以前序和后序不能唯一确定一棵二叉树!

#总结

之前我们讲的二叉树题目都是各种遍历二叉树,这次开始构造二叉树了,思路其实比较简单,但是真正代码实现出来并不容易。

所以要避免眼高手低,踏实地把代码写出来。

我同时给出了添加日志的代码版本,因为这种题目是不太容易写出来调一调就能过的,所以一定要把流程日志打出来,看看符不符合自己的思路。

大家遇到这种题目的时候,也要学会打日志来调试(如何打日志有时候也是个技术活),不要脑动模拟,脑动模拟很容易越想越乱。

最后我还给出了为什么前序和中序可以唯一确定一棵二叉树,后序和中序可以唯一确定一棵二叉树,而前序和后序却不行。

认真研究完本篇,相信大家对二叉树的构造会清晰很多。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/344095.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

计算机缺失msvcp140.dll的修复教程,教你快速解决dll问题

“针对计算机系统中出现的msvcp140.dll文件丢失问题&#xff0c;小编将详细阐述一系列有效的解决方法。首先&#xff0c;msvcp140.dll是Microsoft Visual C Redistributable Package中的一个关键动态链接库文件&#xff0c;对于许多应用程序的正常运行至关重要。当系统提示该文…

Minitab的单因子方差分析的结果

单因子方差分析概述 当有一个类别因子和一个连续响应并且想要确定两个或多个组的总体均值是否存在差异时&#xff0c;可使用 单因子方差分析。如果经检验&#xff0c;发现至少有一组存在差异&#xff0c;请使用单因子方差分析中的比较对话框来标识存在显著差异的组对。 例如&…

Win10安装配置Redis,修改密码

一、下载Redis tporadowski 提供了 支持 Windows平台的 Redis 安装包&#xff0c;目前仍在维护&#xff0c;目前最新版本是 5.0.14&#xff0c;更新速度跟Redis官网也相差好几个大版本。 下载地址&#xff1a;https://github.com/tporadowski/redis/releases 二、Redis 安装 …

MATLAB - 卫星自旋的模型参考自适应控制(MRAC)

系列文章目录 前言 本例展示了如何使用模型参考自适应控制 (MRAC) 控制卫星自旋&#xff0c;使未知控制系统与理想参考模型相匹配。卫星系统在 Simulink 中建模&#xff0c;MRAC 控制器使用 Simulink Control Design™ 软件提供的模型参考自适应控制模块实现。 一、卫星旋转控…

CCF模拟题 202309-2 坐标变换(其二)

问题描述 试题编号&#xff1a; 202309-2 试题名称&#xff1a; 坐标变换&#xff08;其二&#xff09; 时间限制&#xff1a; 1.0s 内存限制&#xff1a; 512.0MB 问题描述&#xff1a; 对于平面直角坐标系上的坐标 &#xff08;x,y&#xff09;&#xff0c;小 P 定义了如下两…

仓储|仓库管理水墨屏RFID电子标签2.4G基站CK-RTLS0501G功能说明与安装方式

随着全球智能制造进度的推进以及物流智能化管理水平的升级&#xff0c;行业亟需一种既能实现RFID批量读取、又能替代纸质标签在循环作业、供应链管理以及实现动态条码标签显示的产品。在此种行业需求背景下&#xff0c;我是适时推出了基于墨水屏显示技术的VT系列可视化超高频标…

Office Tool Plus v10.6.2.0绿色版

软件介绍 Office Tool Plus&#xff08;简称OTP&#xff09;是一款微软Office办公软件下载、安装、管理的辅助增强工具。它可以快速自定义部署&#xff0c;在线下载安装 Office 的各个版本&#xff0c;也可以通过已有的离线安装文件来部署Office镜像&#xff0c;同时在安装过程…

百家大吉·夕阳关爱——昌岗街微型养老博览会

居民热情参与博览会 为让长者了解及选择适合自己的养老服务&#xff0c;昌岗街在2023年12月27日开展以“百家大吉夕阳关爱”为主题的昌岗街微型养老服务公益博览会活动&#xff0c;通过搭建养老服务机构供需服务平台&#xff0c;拓宽社区长者了解正规养老服务机构的渠道&#…

Java中的栈和队列操作,相互实现(力扣 232, 225)

栈和队列&#xff08;Java&#xff09; Java中的 栈 & 队列 操作栈的使用队列的使用 LeetCode 232. 用栈实现队列我的代码 LeetCode 225. 用队列实现栈我的代码 Java中的 栈 & 队列 操作 栈的使用 栈的方法功能Stack()构造一个空的栈E push(E e)将e入栈&#xff0c;并…

与纸质合同相比,电子合同有哪些优势?

在无纸化办公的当下&#xff0c;电子合同软件成为了企业数字化转型必不可少的工具。而随着国内电子合同软件功能的完善&#xff0c;电子合同拥有便捷&#xff0c;安全&#xff0c;功能等要素&#xff0c;因此&#xff0c;电子合同是更多人的选择方式。 电子合同指的是双方或者多…

【卡梅德生物】单B细胞技术:牛单抗制备

1.牛单B细胞技术原理 单个B细胞抗体制备技术是近年来新发展的一类快速制备单克隆抗体的技术&#xff0c;基于流式细胞分选技术进行单B细胞单抗制备&#xff0c;利用每个B细胞只含有一个功能性重链可变区DNA序列和一个轻链可变区DNA序列且只产生一种特异性抗体的特性&#xff0c…

Linux的DNS域名解析服务

一.DNS基础 1.1 DNS简介 DNS域名系统 &#xff08;Domain Name System 缩写为&#xff1a;DNS&#xff09;是因特网的一项核心服务&#xff0c;它作为可以将 域名 和 IP地址 相互映射的一个分布式数据库&#xff0c;能够使人更加方便的访问互联网&#xff0c;而不用去记住能够…