OpenCV-19图像的仿射变换

放射变换是图像旋转,缩放,平移的总称,具体的做法是通过一个矩阵和原图片坐标进行计算,得到新的坐标,完成变换,所以关键就是这个矩阵。

一、仿射变换之图像平移

使用API------warpAffine(src ,M, dsize, flags, mode, value)

warp:弯曲             affine:仿射

其中src为图片

M:变换矩阵

dsize:输出图片大小

flag: 与resize中的插值算法一直

mode:边界外推法标志

value:填充边界值

平移矩阵:矩阵中的每个像素由(x,y)组成(x,y)表示这个像素的坐标,假设沿x轴平移tx,沿y轴平移ty,那么最后得到的坐标为(x,y) =  (x + tx, y + ty),用矩阵表示就是:

第一个坐标代表列,第二个坐标代表行。

示例代码如下:

import cv2
import numpy as npdog = cv2.imread("dog.png")
h, w, ch = dog.shape
print(dog.shape)   # 先行后列# 写下变换矩阵,最少是float32位
M = np.float32([[1, 0, 200], [0, 1, 0]])  # 第一个对应水平平移,第二个对应上下平移
new_dog = cv2.warpAffine(dog, M,  dsize=(w, h))   # 先列后行cv2.imshow("dpg", dog)
cv2.imshow("new_dpg", new_dog)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果如下:

二、仿射变换之获取变换矩阵

第一中获取变换方程的方法

OpenCV提供了计算变换矩阵的API---getRotationMatrix2D(center, angle, scale)

center: 中心点,以图片的哪个点作为旋转时的中心点

angle:旋转的角度,按照逆时针旋转。

scale:缩放比例,即想图片进行什么样的缩放

示例代码如下:

# M = cv2.getRotationMatrix2D((100, 100), 15, 1)   # 与原图无关 设定中心点进行旋转
M = cv2.getRotationMatrix2D((w/2, h/2), 15, 1)   # 按照图片的中心点进行旋转
new_dog = cv2.warpAffine(dog, M,  dsize=(w, h))   # 先列后行

输出结果如下:

第二种获取变换方程的方法

getAffineTransform(src[], dst[])通过三点可以确定变换后的位置,相当于解方程,3个点对应三个方程,能解出便宜的参数和旋转的角度。

相当于原图的三个点坐标变为另外三个点的坐标,图像按照坐标的格式旋转。

示例代码如下:

sre = np.float32([[200, 100], [300, 100], [200, 300]])   # 初始三个点的坐标
dst = np.float32([[100, 50], [150, 100], [100, 300]])     # 变化后三个点的坐标
M = cv2.getAffineTransform(sre, dst)
new_dog = cv2.warpAffine(dog, M, dsize=(w, h))  # 先列后行

输出结果如下:

三、仿射变换之透视变化

透视变化就是将一种坐标系变为另一种坐标系,简单来说可以把一张“斜”的图变“正”。

使用API---warpPerspective(img,M, dsize)

对于透视变换来说,M是一个3*3的矩阵。

同时使用API---getPerspectiveTransform(src, dst)获取透视变换的变换矩阵,需要4个点,即图片的四个角。

最后在通过cv.namedWindow对窗口进行缩放

示例代码如下:

src = np.float32([[100, 200], [500, 200], [100, 600], [500, 600]])    # 原图的四个坐标
dst = np.float32([[0, 0], [500, 0], [0, 300], [500, 300]])
M = cv2.getPerspectiveTransform(src, dst)
new_dog = cv2.warpPerspective(dog, M, (500, 300))
# 创建窗口对图片进行缩放
cv2.namedWindow("dog", cv2.WINDOW_NORMAL)
cv2.resizeWindow("dog", 640, 480)
cv2.imshow("dog", dog)cv2.namedWindow("new_dog", cv2.WINDOW_NORMAL)
cv2.resizeWindow("new_dog", 640, 480)
cv2.imshow("new_dog", new_dog)

输出结果如下:

综合演示代码如下所示:

import cv2
import numpy as npdog = cv2.imread("dog.png")
h, w, ch = dog.shape
print(dog.shape)  # 先行后列# 写下变换矩阵,最少是float32位
# M = np.float32([[1, 0, 200], [0, 1, 0]])  # 第一个对应水平平移,第二个对应上下平移
# new_dog = cv2.warpAffine(dog, M,  dsize=(w, h))   # 先列后行# 获取变换矩阵
# M = cv2.getRotationMatrix2D((100, 100), 15, 1)   # 与原图无关 设定中心点进行旋转
# M = cv2.getRotationMatrix2D((w / 2, h / 2), 15, 1)  # 按照图片的中心点进行旋转
# new_dog = cv2.warpAffine(dog, M, dsize=(w, h))  # 先列后行# 通过三个点的坐标获取变换矩阵
# sre = np.float32([[200, 100], [300, 100], [200, 300]])   # 初始三个点的坐标
# dst = np.float32([[100, 50], [150, 100], [100, 300]])     # 变化后三个点的坐标
# M = cv2.getAffineTransform(sre, dst)
# new_dog = cv2.warpAffine(dog, M, dsize=(w, h))  # 先列后行# 透视变换
src = np.float32([[100, 200], [500, 200], [100, 600], [500, 600]])    # 原图的四个坐标
dst = np.float32([[0, 0], [500, 0], [0, 300], [500, 300]])
M = cv2.getPerspectiveTransform(src, dst)
new_dog = cv2.warpPerspective(dog, M, (500, 300))# 创建窗口对图片进行缩放
cv2.namedWindow("dog", cv2.WINDOW_NORMAL)
cv2.resizeWindow("dog", 640, 480)
cv2.imshow("dog", dog)cv2.namedWindow("new_dog", cv2.WINDOW_NORMAL)
cv2.resizeWindow("new_dog", 640, 480)
cv2.imshow("new_dog", new_dog)
cv2.waitKey(0)
cv2.destroyAllWindows()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/344546.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【LangChain学习之旅】—(7) 调用模型:使用OpenAI API还是微调开源Llama2/ChatGLM?

【LangChain学习之旅】—(7) 调用模型:使用OpenAI API还是微调开源Llama2/ChatGLM? 大语言模型发展史预训练 微调的模式用 HuggingFace 跑开源模型申请使用 Meta 的 Llama2 模型通过 HuggingFace 调用 LlamaLangChain 和 Hugging…

解决:ModuleNotFoundError: No module named ‘dbutils’

解决:ModuleNotFoundError: No module named ‘dbutils’ 文章目录 解决:ModuleNotFoundError: No module named dbutils背景报错问题报错翻译报错位置代码报错原因解决方法方法一,直接安装方法二,手动下载安装方法三,…

强化学习应用(四):基于Q-learning的无人机物流路径规划研究(提供Python代码)

一、Q-learning简介 Q-learning是一种强化学习算法,用于解决基于马尔可夫决策过程(MDP)的问题。它通过学习一个价值函数来指导智能体在环境中做出决策,以最大化累积奖励。 Q-learning算法的核心思想是通过不断更新一个称为Q值的…

快速搭建前端开发平台利器

JNPF是一款基于springboot、vue.js技术的企业级低代码平台,采用微服务、前后端分离等标准的原生架构,基于可视化业务建模、流程建模、表单建模、报表建模、大屏建模、移动端建模等工具,零代码快速构建业务应用。 官网地址:https:…

C++|44.智能指针

文章目录 智能指针unique_ptr特点一——无法进行复制 shared_ptr特点一——可复制特点二——计数器(用于确定删除的时机) 其他 智能指针 通常的指针是需要特殊地去申请对应的空间,并在不使用的时候还需要人工去销毁。 而智能指针相对普通的指…

imgaug库指南(19):从入门到精通的【图像增强】之旅

引言 在深度学习和计算机视觉的世界里,数据是模型训练的基石,其质量与数量直接影响着模型的性能。然而,获取大量高质量的标注数据往往需要耗费大量的时间和资源。正因如此,数据增强技术应运而生,成为了解决这一问题的…

SAP OData(三)Query Option

Query option是指客户端在获取EntitySet的URL中后缀的一些指令,在第一篇第四小节我们已经见识了一部分Query指令。在下面表中列出了最重要的QueryOption。注意指令在URL中必须小写。 Operation Query Option Filtering and projecting $filter and $select Sort…

MySQL夯实之路-查询性能优化深入浅出

MySQL调优分析 explain;show status查看服务器状态信息 优化 减少子任务,减少子任务执行次数,减少子任务执行时间(优,少,快) 查询优化分析方法 1.访问了太多的行和列&#xff1…

react 项目结构配置

1 项目整体目录结构的搭建 如下图: 2 重置css样式: normalize.css reset.less ; 第一步 安装 npm i normalize.css 入口文件index.tsx导入:import ‘noremalize.css’ 第二步 创建自己的css样式:在assets文件夹中创建css…

Salesforce财务状况分析

纵观Salesforce发展史和十几年财报中的信息,Salesforce从中小企业CRM服务的蓝海市场切入,但受限于中小企业的生命周期价值和每用户平均收入小且获客成本和流失率不对等,蓝海同时也是死海。 Salesforce通过收购逐渐补足品牌和产品两块短板&am…

【iOS】数据持久化(四)之FMDB

正如我们前面所看到的,原生SQLite API在使用时还是比较麻烦的,于是,开源社区就出现了一系列将SQLite API进行封装的库,其中FMDB的被大多数人所使用 FMDB和SQLite相比较,SQLite比较原始,操作比较复杂&#…

js:使用canvas画一个半圆

背景 需求需要画一个半圆&#xff0c;或者多半圆&#xff0c;其实一下子就能想到 canvas 中的圆弧&#xff0c;核心使用 context.arc context.arc(x,y,r,sAngle,eAngle,counterclockwise)接下来我们看看示例 例一 <!DOCTYPE html> <html lang"en"> &…