OpenCV-22高斯滤波

一、高斯函数的基础

要理解高斯滤波首先要直到什么是高斯函数,高斯函数是符合高斯分布的(也叫正态分布)的数据的概率密度函数。

 高斯函数的特点是以x轴某一点(这一点称为均值)为对称轴,越靠近中心数据发生的概率越高,最终形成一个两边平缓,中间陡峭的钟型(有的地方也叫帽子)图形。

高斯函数的一般形式:以(0,0)和(0,0,0)为中点:

高斯滤波就是使用符合高斯分布的卷积核对图片进行卷积操作,所以高斯滤波的重点是如何计算符合高斯分布的卷积核,即高斯模板:

假设中心点的坐标为(0,0),那么取距离它最近的8个坐标,为了计算,需要设定 \delta = 1.5,则模糊半径为1的高斯模板就如下所示:

我们可以观察到越靠近中心值,数值越大,越边缘的数值越小,符合高斯分布的特点。

通过高斯函数计算得到的是概率函数密度, 所以我们还有确保着九个点加起来为1,这9个点的权重总和等于0.4787147, 因此上面9个值还要分别除以0.4787147, 得到最终的高斯模板。

注意:有的整数的高斯模板是在归一化后的高斯模板的举出是每个数除上左上角的数值,然后取证。

有了卷积核,计算高斯滤波就简单了,假设现在有9个像素点,灰度值(0-255)的高斯滤波计算如下:

 二、在OpenCV中使用高斯滤波

使用API---GaussiamBlur(src, ksize, sigmaX[, dst[, sigmaY[, borderType]]])

--- kernel:高斯核

---sigmaX:x轴的标准差(一般只需要设定一个标准差就行)

---sigmaY:Y轴的标准差,默认为0,此时sigmaY = sigmaX

如果没有指定sigmaY的值,会分别从Ksize的宽度和高度计算sigma,此时sigma = 0

选择不同的sigma的值会得到不同的平滑效果,sigma越大,平滑效果越明显。

示例代码如下:

import cv2
import numpy as npdog = cv2.imread("dog.png")
NEW_DOG = cv2.resize(dog, (640, 480))
new_dog = cv2.GaussianBlur(NEW_DOG, (5, 5), sigmaX=10)cv2.imshow("img", np.hstack((NEW_DOG, new_dog)))
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果如下:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/344803.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

虚拟机连接(与主机断开连接)U盘的按钮为灰色之解决方法

在WIN11中,虚拟机“连接(与主机断开连接)U盘”选项为灰色,解决方法如下: 1、关闭虚拟机电源,得到下面的界面: 2、根据上述提示,找到虚拟机所在磁盘 3、配置文件属性见下图: 4、使用记事本打开…

R语言【paleobioDB】——pbdb_map():根据化石记录绘制地图

Package paleobioDB version 0.7.0 paleobioDB 包在2020年已经停止更新,该包依赖PBDB v1 API。 可以选择在Index of /src/contrib/Archive/paleobioDB (r-project.org)下载安装包后,执行本地安装。 Usage pbdb_map (data, col.int"white" ,p…

资源三号03星-立体测绘卫星星座

资源三号03星作为我国民用高分辨率立体测图卫星资源三号系列的第三颗卫星,在资源三号02星技术状态的基础上进行了继承和适当优化,设计寿命由资源三号02星的5年延长至8年,星上搭载了三线阵立体测绘相机、多光谱相机和业务化应用的激光测高仪&a…

git修改历史(非最新)提交信息

二、修改最近第二次或更早之前的commit信息 当前有三次提交,从近到远分别为1、2、3 以修改第2次提交为例(从最新往前数) 1、使用命令git rebase -i HEAD~2 按i进入编辑模式,将对应的pick改为edit,然后ctrlc退出。最…

Nightingale 夜莺监控系统 - 部署篇(1)

Author:rab 官方文档:https://flashcat.cloud/docs 目录 一、概述二、架构2.1 中心机房架构2.2 边缘下沉式混杂架构 三、环境四、部署4.1 中心机房架构部署4.1.1 MySQL4.1.2 Redis4.1.3 Prometheus4.1.4 n9e4.1.5 Categraf4.1.6 验证4.1.7 配置数据源 4…

准备好迎接新兴的汽车雷达卫星架构了吗?(TI文档)

引言 随着全球新车评估计划的安全等级和法规对主动安全功能的要求越来越严格,安全是当今车辆的一个不容置疑的特征。全球汽车制造商正在满足这些安全要求,并通过不断增强车辆内的高级驾驶辅助系统(ADAS)功能,包括自动紧急制动(AEB)、自适应巡…

ZooKeeper 实战(四) Curator Watch事件监听

文章目录 ZooKeeper 实战(四) Curator Watch事件监听0.前言1.Watch 事件监听概念2.NodeCache2.1.全参构造器参数2.2.代码DEMO2.3.日志输出 3.PathChildrenCache3.1.全参构造器参数3.2.子节点监听时间类型3.2.代码DEMO 4.TreeCache4.1.构造器参数4.2.代码DEMO4.3.日志输出 ZooKe…

Unity中URP下实现深度贴花

文章目录 前言一、场景设置二、实现思路1、通过深度图求出像素所在视图空间的Z值2、通过模型面片的求出像素在观察空间下的坐标值3、结合两者求出 深度图中像素的 XYZ值4、再将此坐标转换到模型的本地空间,把XY作为UV来进行纹理采样 三、URP下实现1、通过深度图求出…

资源三角形

美国哈佛大学的研究小组提出了著名的资源三角形:没有物质,什么也不存在;没有能量,什么也不会发生;没有信息,任何事物都没有意义。物质、能量和信息是相互有区别的,是人类社会赖以生存、发展的三…

Python学习从0到1 day3 python变量和debug

没关系,这破败的生活压不住我 ——24.1.13 一、变量的定义 1.什么是量? 量是程序运行中的最小单元 2.什么是变量呢? ①变量是存储数据的容器 ②变量存储的数据时临时的,变量只有在程序运行过程中是有效的,当程序执行结…

【机器学习300问】5、什么是强化学习?

我将从三个方面为大家简明阐述什么是强化学习,首先从强化学习的定义大家的了解强化学习的特点,其次学习强化学习里特殊的术语加深对强化学习的理解,最后通过和监督学习与无监督学习的比较,通过对比学习来了解强化学习。 一、强化…

大数据技术原理与应用期末复习(林子雨)

大数据技术原理与应用期末复习(林子雨) Hadoop的特性HBase编程实践NoSQL的四大类型键值数据库优点:缺点: 列族数据库优点:缺点: 文档数据库优点:缺点: 图数据库优点:缺点…