BikeDNA(七)外在分析:OSM 与参考数据的比较1

BikeDNA(七)外在分析:OSM 与参考数据的比较1

该笔记本将提供的参考自行车基础设施数据集与同一区域的 OSM 数据进行所谓的外部质量评估进行比较。 为了运行这部分分析,必须有一个参考数据集可用于比较。

该分析基于将参考数据集与 OSM 进行比较,并突出显示它们的不同之处,包括自行车基础设施在两个数据集中映射的“程度”以及基础设施“如何”映射,从而查明差异 在网络结构中。

所有差异都是针对与 OSM 相关的参考数据计算的,以 OSM 数据为基线。 例如,网络密度的差异是通过计算参考密度减去 OSM 密度来计算的。 因此,正差值(大于0)表示参考值高出多少; 负差值(低于 0)表示参考值低了多少。 因此,如果差异以百分比形式给出,则 OSM 值将被视为总值 (100%)。

虽然分析是基于比较,但它没有对哪个数据集更好做出先验假设。 对于识别出的差异也是如此:BikeDNA 不允许自动得出哪个数据集质量更好的结论,而是要求用户解释发现的差异的含义,例如,不同的特征是否是遗漏错误的结果 或佣金,以及哪个数据集更正确。 然而,许多低值可能表明参考数据的完整性低于 OSM 数据。

目标是确定的差异可用于评估参考数据集和 OSM 数据集的质量,并支持决定应使用哪个数据集进行进一步分析。

Prerequisites & Input/Output

外部比较几乎完全基于笔记本 2a 和 2b 的结果,并期望使用先前笔记本中使用的文件路径来存储结果和绘图。 笔记本 1a、2a、1b 和 2b 必须成功运行才能使用此笔记本。 应用概念和指标的详细解释可以在内在分析笔记本(2a 和 2b)中找到。

Familiarity required

为了正确解释一些空间数据质量指标,需要对该区域有一定的了解。


# Load libraries, settings and dataimport json
import pickle
import warnings
from collections import Counterimport contextily as cx
import folium
import geopandas as gpd
import matplotlib as mpl
import matplotlib.colors as colors
import matplotlib.pyplot as plt
import numpy as np
import osmnx as ox
import pandas as pd
import yaml
from matplotlib import cm
from collections import Counterfrom src import evaluation_functions as eval_func
from src import graph_functions as graph_func
from src import plotting_functions as plot_func# Read in dictionaries with settings
%run ../settings/yaml_variables.py
%run ../settings/plotting.py
%run ../settings/tiledict.py
%run ../settings/df_styler.py# Load data
%run ../settings/load_osmdata.py
%run ../settings/load_refdata.py
%run ../settings/load_results.pywarnings.filterwarnings("ignore")
d:\work\miniconda3\envs\bikeDNA\Lib\site-packages\tqdm\auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.htmlfrom .autonotebook import tqdm as notebook_tqdm
D:\tmp_resource\BikeDNA-main\BikeDNA-main\scripts\settings\plotting.py:49: MatplotlibDeprecationWarning: The get_cmap function was deprecated in Matplotlib 3.7 and will be removed two minor releases later. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap(obj)`` instead.cmap = cm.get_cmap(cmap_name, n)
D:\tmp_resource\BikeDNA-main\BikeDNA-main\scripts\settings\plotting.py:46: MatplotlibDeprecationWarning: The get_cmap function was deprecated in Matplotlib 3.7 and will be removed two minor releases later. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap(obj)`` instead.cmap = cm.get_cmap(cmap_name)
<string>:49: MatplotlibDeprecationWarning: The get_cmap function was deprecated in Matplotlib 3.7 and will be removed two minor releases later. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap(obj)`` instead.
<string>:46: MatplotlibDeprecationWarning: The get_cmap function was deprecated in Matplotlib 3.7 and will be removed two minor releases later. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap(obj)`` instead.OSM graphs loaded successfully!
OSM data loaded successfully!
Reference graphs loaded successfully!
Reference data loaded successfully!
Results from intrinsic analyses loaded successfully!

OSM versus reference network

plot_func.plot_saved_maps([osm_results_static_maps_fp + "area_network_osm",ref_results_static_maps_fp + "area_network_reference",]
)

在这里插入图片描述

1.数据完整性

本节从数据完整性方面比较 OSM 和参考数据集。 目标是确定一个数据集是否比另一个数据集映射了更多的自行车基础设施,如果是,这些差异是否集中在某些区域。

本节首先比较两个数据集中基础设施的总长度。 然后,首先在全局(研究区域)和局部(网格单元)级别比较基础设施、节点和悬空节点密度(即每平方公里基础设施/节点的长度)。 最后,分别比较受保护和未受保护的自行车基础设施的密度差异。

计算网格局部密度差异作为数据质量的度量也已被例如应用。 Haklay (2010)。

方法

为了考虑自行车基础设施映射方式的差异,网络长度和密度的计算基于基础设施长度,而不是网络边缘的几何长度。 例如,一条 100 米长的向路径(几何长度:100m)贡献了 200 米的自行车基础设施(基础设施长度:200m)。

解释

密度差异可能表明数据不完整。 例如,如果网格单元在 OSM 中的边缘密度明显高于参考数据集中的边缘密度,则这可能表明参考数据集中未映射、缺失的特征,或者街道在 OSM 中被错误地标记为自行车基础设施。

1.1 网络长度

plot_func.compare_print_network_length(osm_edges_simplified.infrastructure_length.sum(),ref_edges_simplified.infrastructure_length.sum(),
)
Length of the OSM data set: 1056.49 km
Length of the reference data set: 626.48 kmThe reference data set is 430.01 km shorter than the OSM data set.
The reference data set is 40.70% shorter than the OSM data set.
# Plot length comparisonset_renderer(renderer_plot)bar_labels = ["OSM", reference_name]
x_positions = [1, 2]
bar_colors = [pdict["osm_base"], pdict["ref_base"]]# Infrastructure length density
data = [osm_edges_simplified.infrastructure_length.sum()/1000,ref_edges_simplified.infrastructure_length.sum()/1000]
y_label = "Network edge lengths [km]"
filepath = compare_results_plots_fp + "network_length_compare"
title = area_nameplot = plot_func.make_bar_plot(data=data,bar_labels=bar_labels,y_label=y_label,x_positions=x_positions,title=title,bar_colors=bar_colors,filepath=filepath,figsize=pdict["fsbar_small"]
)

在这里插入图片描述

1.2 网络密度

全球网络密度
plot_func.print_network_densities(osm_intrinsic_results, "OSM")
plot_func.print_network_densities(ref_intrinsic_results, "reference")
In the OSM data, there are:- 5824.58 meters of cycling infrastructure per km2.- 27.65 nodes in the cycling network per km2.- 10.08 dangling nodes in the cycling network per km2.In the reference data, there are:- 3453.85 meters of cycling infrastructure per km2.- 22.74 nodes in the cycling network per km2.- 4.80 dangling nodes in the cycling network per km2.

全球网络密度(每平方公里)

# Plot global differenceset_renderer(renderer_plot)# Infrastructure length density
subplotdata = [(osm_intrinsic_results["network_density"]["edge_density_m_sqkm"],ref_intrinsic_results["network_density"]["edge_density_m_sqkm"],),(osm_intrinsic_results["network_density"]["node_density_count_sqkm"],ref_intrinsic_results["network_density"]["node_density_count_sqkm"],),(osm_intrinsic_results["network_density"]["dangling_node_density_count_sqkm"],ref_intrinsic_results["network_density"]["dangling_node_density_count_sqkm"],),
]
subplotx_positions = [[1,2] for j in range(3)]
subplotbar_labels = ["Infrastructure length (m/km2)","Total node density (1/km2)","Dangling node density (1/km2)",
]
filepath = compare_results_plots_fp + "network_densities_compare"
subplottitle = ["Avg infrastructure length per km2","Avg nodes per km2","Avg dangling nodes per km2",
]plot = plot_func.make_bar_subplots(subplot_data=subplotdata,nrows=1,ncols=3,bar_labels=[["OSM", reference_name] for j in range(3)],y_label=subplotbar_labels,x_positions=subplotx_positions,title=subplottitle,bar_colors=[pdict["osm_base"], pdict["ref_base"]],filepath=filepath,wspace=0.4
)

在这里插入图片描述

本地网络密度
### Plot density comparisonsset_renderer(renderer_map)# Edge density
plot_cols = ["osm_edge_density", "ref_edge_density"]
plot_func.plot_multiple_grid_results(grid=grid,plot_cols=plot_cols,plot_titles=["OSM edge density", f"{reference_name} edge density"],filepath=compare_results_static_maps_fp + "density_edge_compare",cmap=pdict["pos"],alpha=pdict["alpha_grid"],cx_tile=cx_tile_2,no_data_cols=["count_osm_edges", "count_ref_edges"],use_norm=True,norm_min=0,norm_max = max(grid[plot_cols].max()),figsize = pdict["fsmap"],legend = False,
)# Node density
plot_cols = ["osm_node_density", "ref_node_density"]
plot_func.plot_multiple_grid_results(grid=grid,plot_cols=plot_cols,plot_titles=["OSM node density", f"{reference_name} node density"],filepath=compare_results_static_maps_fp + "density_node_compare",cmap=pdict["pos"],alpha=pdict["alpha_grid"],cx_tile=cx_tile_2,no_data_cols=["count_osm_nodes", "count_ref_nodes"],use_norm=True,norm_min=0,norm_max = max(grid[plot_cols].max()),figsize = pdict["fsmap"],legend = False,
)# Dangling node density
plot_cols = ["osm_dangling_node_density", "ref_dangling_node_density"]
plot_func.plot_multiple_grid_results(grid=grid,plot_cols=plot_cols,plot_titles=["OSM dangling node density", f"{reference_name} dangling node density"],filepath=compare_results_static_maps_fp + "density_danglingnode_compare",cmap=pdict["pos"],alpha=pdict["alpha_grid"],cx_tile=cx_tile_2,no_data_cols=["count_osm_nodes", "count_ref_nodes"],use_norm=True,norm_min=0,norm_max = max(grid[plot_cols].max()),figsize = pdict["fsmap"],legend = False,
)

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

网络密度的局部差异

以OSM数据中的密度作为比较基线,绝对差值计算为“参考值”-“OSM值”。 因此,正值表示基础设施类型的参考密度高于 OSM 密度; 负值表示参考密度低于 OSM 密度。

grid["edge_density_diff"] = grid.ref_edge_density.fillna(0
) - grid.osm_edge_density.fillna(0)grid["node_density_diff"] = grid.ref_node_density.fillna(0
) - grid.osm_node_density.fillna(0)grid["dangling_node_density_diff"] = grid.ref_dangling_node_density.fillna(0
) - grid.osm_dangling_node_density.fillna(0)
# Network density grid plotsset_renderer(renderer_map)plot_cols = ["edge_density_diff", "node_density_diff", "dangling_node_density_diff"]
plot_titles = [area_name + f": {reference_name} edge density differences to OSM (m/km2)",area_name + f": {reference_name} node density differences to OSM (m/km2)",area_name + f": {reference_name} dangling node density differences to OSM (m/km2)"
]
filepaths = [compare_results_static_maps_fp + "edge_density_compare",compare_results_static_maps_fp + "node_density_compare",compare_results_static_maps_fp + "dangling_node_density_compare",
]cmaps = [pdict["diff"]] * 3# Cols for no-data plots
no_data_cols = [("osm_edge_density", "ref_edge_density"),("osm_node_density", "ref_node_density"),("osm_dangling_node_density", "ref_dangling_node_density"),
]cblim_edge = max(abs(min(grid["edge_density_diff"].fillna(value=0))),max(grid["edge_density_diff"].fillna(value=0)),
)cblim_node = max(abs(min(grid["node_density_diff"].fillna(value=0))),max(grid["node_density_diff"].fillna(value=0)),
)cblim_d_node = max(abs(min(grid["dangling_node_density_diff"].fillna(value=0))),max(grid["dangling_node_density_diff"].fillna(value=0)),
)norm_min = [-cblim_edge, -cblim_node, -cblim_d_node]
norm_max = [cblim_edge, cblim_node, cblim_d_node]plot_func.plot_grid_results(grid=grid,plot_cols=plot_cols,plot_titles=plot_titles,filepaths=filepaths,cmaps=cmaps,alpha=pdict["alpha_grid"],cx_tile=cx_tile_2,no_data_cols=no_data_cols,use_norm=True,norm_min=norm_min,norm_max=norm_max,
)

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

受保护和不受保护的自行车基础设施的密度

受保护/未受保护基础设施的全球网络密度

# Plot global differencesset_renderer(renderer_plot)data_labels = ["protected_density", "unprotected_density", "mixed_density"]
legend_labels = ["OSM", reference_name]
data_osm = [osm_intrinsic_results["network_density"][label + "_m_sqkm"] for label in data_labels
]
data_ref = [ref_intrinsic_results["network_density"][label + "_m_sqkm"] for label in data_labels
]
bar_colors = [pdict["osm_base"], pdict["ref_base"]]
title = f"{area_name}"x_labels = ["Protected", "Unprotected", "Mixed"]
x_axis = [np.arange(len(x_labels)) * 2 - 0.25, np.arange(len(x_labels)) * 2 + 0.25]
x_ticks = np.arange(len(x_labels)) * 2y_label = "Infrastructure densities (m/km2)"filepath = compare_results_plots_fp + "infrastructure_type_density_diff_compare"fig = plot_func.make_bar_plot_side(x_axis=x_axis,data_osm=data_osm,data_ref=data_ref,bar_colors=bar_colors,legend_labels=legend_labels,title=title,x_ticks=x_ticks,x_labels=x_labels,x_label=None,y_label=y_label,filepath=filepath,figsize=pdict["fsbar_small"]
)

在这里插入图片描述

受保护/未受保护基础设施的本地网络密度

if "ref_protected_density" in grid.columns:plot_func.plot_saved_maps([osm_results_static_maps_fp + "density_protected_OSM",ref_results_static_maps_fp + "density_protected_reference",])else:plot_func.plot_saved_maps([osm_results_static_maps_fp + "density_protected_OSM"] * 2, alpha=[1, 0])print(f"No infrastructure is mapped as protected in the {reference_name} data.")if "ref_unprotected_density" in grid.columns:plot_func.plot_saved_maps([osm_results_static_maps_fp + "density_unprotected_OSM",ref_results_static_maps_fp + "density_unprotected_reference",])else:plot_func.plot_saved_maps([osm_results_static_maps_fp + "density_unprotected_OSM"] * 2, alpha=[1, 0])print(f"No infrastructure is mapped as unprotected in the {reference_name} data.")if "ref_mixed_density" in grid.columns:plot_func.plot_saved_maps([osm_results_static_maps_fp + "density_mixed_OSM",ref_results_static_maps_fp + "density_mixed_reference",])else:plot_func.plot_saved_maps([osm_results_static_maps_fp + "density_mixed_OSM"] * 2, alpha=[1, 0])print(f"No infrastructure is mapped as mixed protected/unprotected in the {reference_name} data.")
No infrastructure is mapped as mixed protected/unprotected in the GeoDanmark data.

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

基础设施类型密度的差异

# Computing difference in infrastructure type density# In case no infrastructure with mixed protected/unprotected exist
if "osm_mixed_density" not in grid.columns:grid["osm_mixed_density"] = 0if "ref_mixed_density" not in grid.columns:grid["ref_mixed_density"] = 0if "ref_protected_density" not in grid.columns:grid["ref_protected_density"] = 0if "ref_unprotected_density" not in grid.columns:grid["ref_unprotected_density"] = 0grid["protected_density_diff"] = grid.ref_protected_density.fillna(0
) - grid.osm_protected_density.fillna(0)
grid["unprotected_density_diff"] = grid.ref_unprotected_density.fillna(0
) - grid.osm_unprotected_density.fillna(0)
grid["mixed_density_diff"] = grid.ref_mixed_density.fillna(0
) - grid.osm_mixed_density.fillna(0)
# Infrastructure type density grid plotsset_renderer(renderer_map)plot_cols = ["protected_density_diff", "unprotected_density_diff", "mixed_density_diff"]
plot_cols = [c for c in plot_cols if c in grid.columns]
plot_titles = [area_name + f": {reference_name} protected infrastructure density differences to OSM (m/km2)",area_name + f": {reference_name} unprotected infrastructure density differences to OSM (1/km2)",area_name + f": {reference_name} mixed infrastructure density differences to OSM (1/km2)",
]filepaths = [compare_results_static_maps_fp + "protected_density_compare",compare_results_static_maps_fp + "unprotected_density_compare",compare_results_static_maps_fp + "mixed_density_compare",
]cmaps = [pdict["diff"]] * len(plot_cols)# Cols for no-data plots
no_data_cols = [("osm_edge_density", "ref_edge_density"),("osm_edge_density", "ref_edge_density"),("osm_edge_density", "ref_edge_density"),
]# Create symmetrical color range around zero
cblim = max(abs(min(grid[plot_cols].fillna(value=0).min())),max(grid[plot_cols].fillna(value=0).max()),
)norm_min = [-cblim] * len(plot_cols)
norm_max = [cblim] * len(plot_cols)plot_func.plot_grid_results(grid=grid,plot_cols=plot_cols,plot_titles=plot_titles,filepaths=filepaths,cmaps=cmaps,alpha=pdict["alpha_grid"],cx_tile=cx_tile_2,no_data_cols=no_data_cols,use_norm=True,norm_min=norm_min,norm_max=norm_max,
)

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

2.网络拓扑结构

在比较数据完整性(即映射了“多少”基础设施)之后,这里我们重点关注网络“拓扑”的差异,它提供了有关“如何”基础设施在两个数据集中映射的信息。 在这里,我们还分析网络边与一个或多个其他边连接的程度,或者它们是否以悬空节点结束。 边缘与相邻边缘正确连接的程度对于可访问性和路由分析等非常重要。

在处理自行车网络上的数据时,首选实际连接的网络元素之间没有间隙的数据集 - 当然反映了真实情况。
识别网络中的悬空节点是识别以“死胡同”结束的边缘的快速且简单的方法。 下冲和过冲分别提供了网络间隙和过度延伸边缘的更精确图像,这给出了悬空节点的误导性计数。

方法

为了识别数据中潜在的间隙或缺失的链接,首先绘制两个数据集中的悬空节点。 然后,单独绘制每个数据集中所有节点中悬挂节点的局部百分比。 最后,我们显示了悬空节点百分比的局部差异。

OSM 和参考数据中的欠调和过调最终会一起绘制在交互式图中,以供进一步检查。

解释

如果一条边在一个数据集中以悬空节点结束,但在另一个数据集中却没有,则表明数据质量存在问题。 数据中缺少连接,或者两条边连接错误。 类似地,悬空节点份额的不同局部率表明自行车网络的映射方式存在差异——尽管在解释中当然应该考虑数据完整性的差异。

下冲是网络数据中误导性差距的明显迹象——尽管它们也可能代表自行车基础设施中的实际差距。 将一个数据集与另一数据集的下冲进行比较可以帮助确定这是数据质量问题还是实际基础设施的质量问题。 交叉口之间存在下冲或间隙的系统差异可能表明不同的数字化策略,因为一些方法会将穿过街道的自行车道绘制为连接的延伸段,而其他方法则会在交叉街道的宽度上引入间隙。 虽然这两种方法都是有效的,但使用前一种方法创建的数据集更适合基于路由的分析。

超调对于分析来说通常不太重要,但大量的超调会引入错误的悬空节点,并扭曲基于节点度或节点与边之间的比率等网络结构的测量。

2.1 简化结果


print(f"Simplifying the OSM network decreased the number of edges by {osm_intrinsic_results['simplification_outcome']['edge_percent_diff']:.1f}%."
)
print(f"Simplifying the OSM network decreased the number of nodes by {osm_intrinsic_results['simplification_outcome']['node_percent_diff']:.1f}%."
)
print("\n")
print(f"Simplifying the {reference_name} network decreased the number of edges by {ref_intrinsic_results['simplification_outcome']['edge_percent_diff']:.1f}%."
)
print(f"Simplifying the {reference_name} network decreased the number of nodes by {ref_intrinsic_results['simplification_outcome']['node_percent_diff']:.1f}%."
)
Simplifying the OSM network decreased the number of edges by 89.0%.
Simplifying the OSM network decreased the number of nodes by 84.4%.Simplifying the GeoDanmark network decreased the number of edges by 91.2%.
Simplifying the GeoDanmark network decreased the number of nodes by 92.2%.

Node degree distribution

degree_sequence_before_osm = sorted((d for n, d in osm_graph.degree()), reverse=True)
degree_sequence_after_osm = sorted((d for n, d in osm_graph_simplified.degree()), reverse=True
)degree_sequence_before_ref = sorted((d for n, d in ref_graph.degree()), reverse=True)
degree_sequence_after_ref = sorted((d for n, d in ref_graph_simplified.degree()), reverse=True
)
# Display already saved degree distribution plotsprint("Note that the two figures below have different y-axis scales.")plot_func.plot_saved_maps([osm_results_plots_fp + "degree_dist_osm",ref_results_plots_fp + "degree_dist_reference"]
)
Note that the two figures below have different y-axis scales.

在这里插入图片描述

2.2 Alpha、beta 和 gamma 指数

在本小节中,我们计算并对比三个聚合网络指标 alpha、beta 和 gamma。 这些指标通常用于描述网络结构,但作为数据质量的衡量标准,它们仅在与相应数据集的值进行比较时才有意义。 因此,alpha、beta 和 gamma 仅是外在分析的一部分,不包含在内在笔记本中。

虽然无法根据这三个指标中的任何一个本身得出有关数据质量的结论,但对两个数据集的指标进行比较可以表明网络拓扑的差异,从而表明基础设施映射方式的差异。

方法

所有三个索引均使用“eval_func.compute_alpha_beta_gamma”计算。

alpha 值是网络中实际与可能的周期的比率。 网络循环被定义为闭环 - 即在其起始节点上结束的路径。 alpha值的范围是0到1。alpha值为0意味着网络根本没有环,即它是一棵树。 alpha 值为 1 意味着网络完全连接,但这种情况很少见。

beta 值是网络中现有边与现有节点的比率。 beta的取值范围是0到N-1,其中N是现有节点的数量。 beta值为0意味着网络没有边; Beta 值为 N-1 意味着网络完全连接(另请参见 gamma 值 1)。 beta 值越高,在任意一对节点之间可以选择的不同路径(平均)就越多。

gamma 值是网络中现有边与可能边的比率。 连接两个现有网络节点的任何边都被定义为“可能”。 因此,gamma 的取值范围为 0 到 1。gamma 值为 0 表示网络没有边;gamma 值为 0 表示网络没有边; gamma 值为 1 意味着网络的每个节点都连接到每个其他节点。

对于所有三个指数,请参阅 Ducruet 和 Rodrigue,2020。 所有三个指数都可以根据网络连接性进行解释: alpha 值越高,网络中存在的周期越多; beta值越高,路径数量越多,网络复杂度越高; 伽马值越高,任何一对节点之间的边越少。

解释

这些指标并没有过多说明数据质量本身,也对于类似规模的网络的拓扑比较没有用处。 不过,通过比较还是可以得出一些结论。 例如,如果两个网络的索引非常相似,尽管网络例如 具有非常不同的几何长度,这表明数据集是以大致相同的方式映射的,但一个数据集只是比另一个包含更多的特征。 然而,如果网络的总几何长度大致相同,但 alpha、beta 和 gamma 的值不同,则这可能表明两个数据集的结构和拓扑根本不同。

osm_alpha, osm_beta, osm_gamma = eval_func.compute_alpha_beta_gamma(edges=osm_edges_simplified,nodes=osm_nodes_simplified,G=osm_graph_simplified,planar=True,
)  # We assume network to be planar or approximately planarprint(f"Alpha for the simplified OSM network: {osm_alpha:.2f}")
print(f"Beta for the simplified OSM network: {osm_beta:.2f}")
print(f"Gamma for the simplified OSM network: {osm_gamma:.2f}")print("\n")ref_alpha, ref_beta, ref_gamma = eval_func.compute_alpha_beta_gamma(ref_edges_simplified, ref_nodes_simplified, ref_graph_simplified, planar=True
)  # We assume network to be planar or approximately planarprint(f"Alpha for the simplified {reference_name} network: {ref_alpha:.2f}")
print(f"Beta for the simplified {reference_name} network: {ref_beta:.2f}")
print(f"Gamma for the simplified {reference_name} network: {ref_gamma:.2f}")
Alpha for the simplified OSM network: 0.11
Beta for the simplified OSM network: 1.15
Gamma for the simplified OSM network: 0.38Alpha for the simplified GeoDanmark network: 0.10
Beta for the simplified GeoDanmark network: 1.14
Gamma for the simplified GeoDanmark network: 0.38
# Plot alpha, beta, gammaset_renderer(renderer_plot)bar_labels = ["OSM", reference_name]bar_colors = [pdict["osm_base"], pdict["ref_base"]]subplot_data = [(len(osm_nodes_simplified), len(ref_nodes_simplified)),(len(osm_edges_simplified), len(ref_edges_simplified)),(osm_edges_simplified.geometry.length.sum()/1000,ref_edges_simplified.geometry.length.sum()/1000,),(osm_alpha, ref_alpha),(osm_beta, ref_beta),(osm_gamma, ref_gamma),
]
y_label = ["","","","","","",
]
subplottitle = ["Total nodes", "Total edges", "Network length (km)", "Alpha", "Beta", "Gamma"]
filepath = compare_results_plots_fp + "alpha_beta_gamma"plot = plot_func.make_bar_subplots(subplot_data=subplot_data,nrows=2,ncols=3,bar_labels=[["OSM", reference_name] for j in range(6)],y_label=y_label,x_positions=[[1,2] for j in range(6)],title=subplottitle,bar_colors=bar_colors,filepath=filepath,wspace=0.4
);

在这里插入图片描述

2.3 悬空节点

osm_dangling_nodes = gpd.read_file(osm_results_data_fp + "dangling_nodes.gpkg")
ref_dangling_nodes = gpd.read_file(ref_results_data_fp + "dangling_nodes.gpkg")

OSM 和参考网络中的悬空节点

# Interactive plot of dangling nodesosm_edges_simplified_folium = plot_func.make_edgefeaturegroup(gdf=osm_edges_simplified,mycolor=pdict["osm_base"],myweight=pdict["line_base"],nametag="OSM edges",show_edges=True,
)osm_nodes_simplified_folium = plot_func.make_nodefeaturegroup(gdf=osm_nodes_simplified,mysize=pdict["mark_base"],mycolor=pdict["osm_base"],nametag="OSM all nodes",show_nodes=True,
)osm_dangling_nodes_folium = plot_func.make_nodefeaturegroup(gdf=osm_dangling_nodes,mysize=pdict["mark_emp"],mycolor=pdict["osm_contrast"],nametag="OSM dangling nodes",show_nodes=True,
)ref_edges_simplified_folium = plot_func.make_edgefeaturegroup(gdf=ref_edges_simplified,mycolor=pdict["ref_base"],myweight=pdict["line_base"],nametag="Reference edges",show_edges=True,
)ref_nodes_simplified_folium = plot_func.make_nodefeaturegroup(gdf=ref_nodes_simplified,mysize=pdict["mark_base"],mycolor=pdict["ref_base"],nametag="Reference all nodes",show_nodes=True,
)ref_dangling_nodes_folium = plot_func.make_nodefeaturegroup(gdf=ref_dangling_nodes,mysize=pdict["mark_emp"],mycolor=pdict["ref_contrast2"],nametag="Reference dangling nodes",show_nodes=True,
)m = plot_func.make_foliumplot(feature_groups=[osm_edges_simplified_folium,osm_nodes_simplified_folium,osm_dangling_nodes_folium,ref_edges_simplified_folium,ref_nodes_simplified_folium,ref_dangling_nodes_folium,],layers_dict=folium_layers,center_gdf=osm_nodes_simplified,center_crs=osm_nodes_simplified.crs,
)bounds = plot_func.compute_folium_bounds(osm_nodes_simplified)
m.fit_bounds(bounds)
m.save(compare_results_inter_maps_fp + "danglingmap_compare.html")display(m)

在这里插入图片描述

print("Interactive map saved at " + compare_results_inter_maps_fp.lstrip("../") + "danglingmap_compare.html")
Interactive map saved at results/COMPARE/cph_geodk/maps_interactive/danglingmap_compare.html
悬空节点的局部值
# Compute pct difference relative to OSMgrid["dangling_nodes_diff_pct"] = np.round(100* (grid.count_ref_dangling_nodes - grid.count_osm_dangling_nodes)/ grid.count_osm_dangling_nodes,2,
)

悬空节点占所有节点的百分比

plot_func.plot_saved_maps([osm_results_static_maps_fp + "pct_dangling_nodes_osm",ref_results_static_maps_fp + "pct_dangling_nodes_reference",]
)

在这里插入图片描述

悬空节点百分比的局部差异

# Plotset_renderer(renderer_map)# norm color bar
cbnorm_dang_diff = colors.Normalize(vmin=-100, vmax=100)  # from -max to +maxfig, ax = plt.subplots(1, figsize=pdict["fsmap"])
from mpl_toolkits.axes_grid1 import make_axes_locatable
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="3.5%", pad="1%")grid.plot(cax=cax,ax=ax,alpha=pdict["alpha_grid"],column="dangling_nodes_diff_pct",cmap=pdict["diff"],legend=True,norm=cbnorm_dang_diff,
)# Add no data patches
grid[grid["dangling_nodes_diff_pct"].isnull()].plot(cax=cax,ax=ax,facecolor=pdict["nodata_face"],edgecolor=pdict["nodata_edge"],linewidth= pdict["line_nodata"],hatch=pdict["nodata_hatch"],alpha=pdict["alpha_nodata"],
)ax.legend(handles=[nodata_patch], loc="upper right")ax.set_title(area_name + f": {reference_name} percent difference to OSM in dangling nodes"
)
ax.set_axis_off()
cx.add_basemap(ax=ax, crs=study_crs, source=cx_tile_2)plot_func.save_fig(fig, compare_results_static_maps_fp + "dangling_nodes_pct_diff_compare")

在这里插入图片描述

下冲/过冲

# USER INPUT: LENGTH TOLERANCE FOR OVER- AND UNDERSHOOTS
length_tolerance_over = 3
length_tolerance_under = 3for s in [length_tolerance_over, length_tolerance_under]:assert isinstance(s, int) or isinstance(s, float), print("Settings must be integer or float values!")
osm_overshoot_ids = pd.read_csv(osm_results_data_fp + f"overshoot_edges_{length_tolerance_over}.csv"
)["edge_id"].to_list()
osm_undershoot_ids = pd.read_csv(osm_results_data_fp + f"undershoot_nodes_{length_tolerance_under}.csv"
)["node_id"].to_list()ref_overshoot_ids = pd.read_csv(ref_results_data_fp + f"overshoot_edges_{length_tolerance_over}.csv"
)["edge_id"].to_list()
ref_undershoot_ids = pd.read_csv(ref_results_data_fp + f"undershoot_nodes_{length_tolerance_under}.csv"
)["node_id"].to_list()osm_overshoots = osm_edges_simplified.loc[osm_edges_simplified.edge_id.isin(osm_overshoot_ids)
]
ref_overshoots = ref_edges_simplified.loc[ref_edges_simplified.edge_id.isin(ref_overshoot_ids)
]
ref_undershoots = ref_nodes_simplified.loc[ref_nodes_simplified.nodeID.isin(ref_undershoot_ids)
]
osm_undershoots = osm_nodes_simplified.loc[osm_nodes_simplified.osmid.isin(osm_undershoot_ids)
]

OSM 和参考网络中的过冲和下冲

# Interactive plot of over/undershootsfeature_groups = []# OSM feature groups
osm_edges_simplified_folium = plot_func.make_edgefeaturegroup(gdf=osm_edges_simplified,mycolor=pdict["osm_base"],myweight=pdict["line_base"],nametag="OSM network",show_edges=True,
)feature_groups.append(osm_edges_simplified_folium)if len(osm_overshoots) > 0:osm_overshoots_folium = plot_func.make_edgefeaturegroup(gdf=osm_overshoots,mycolor=pdict["osm_contrast"],myweight=pdict["line_emp"],nametag="OSM overshoots",show_edges=True,)feature_groups.append(osm_overshoots_folium)if len(osm_undershoots) > 0:osm_undershoot_nodes_folium = plot_func.make_nodefeaturegroup(gdf=osm_undershoots,mysize=pdict["mark_emp"],mycolor=pdict["osm_contrast2"],nametag="OSM undershoot nodes",show_nodes=True,)feature_groups.append(osm_undershoot_nodes_folium)# Reference feature groups
ref_edges_simplified_folium = plot_func.make_edgefeaturegroup(gdf=ref_edges_simplified,mycolor=pdict["ref_base"],myweight=pdict["line_base"],nametag=f"{reference_name} network",show_edges=True,
)feature_groups.append(ref_edges_simplified_folium)if len(ref_overshoots) > 0:ref_overshoots_folium = plot_func.make_edgefeaturegroup(gdf=ref_overshoots,mycolor=pdict["ref_contrast"],myweight=pdict["line_emp"],nametag=f"{reference_name} overshoots",show_edges=True,)feature_groups.append(ref_overshoots_folium)if len(ref_undershoots) > 0:ref_undershoot_nodes_folium = plot_func.make_nodefeaturegroup(gdf=ref_undershoots,mysize=pdict["mark_emp"],mycolor=pdict["ref_contrast2"],nametag=f"{reference_name} undershoot nodes",show_nodes=True,)feature_groups.append(ref_undershoot_nodes_folium)m = plot_func.make_foliumplot(feature_groups=feature_groups,layers_dict=folium_layers,center_gdf=osm_nodes_simplified,center_crs=osm_nodes_simplified.crs,
)bounds = plot_func.compute_folium_bounds(osm_nodes_simplified)
m.fit_bounds(bounds)m.save(compare_results_inter_maps_fp+ f"overundershoots_{length_tolerance_over}_{length_tolerance_under}_compare.html"
)display(m)

在这里插入图片描述

print("Interactive map saved at " + compare_results_inter_maps_fp.lstrip("../")+ f"overundershoots_{length_tolerance_over}_{length_tolerance_under}_compare.html")
Interactive map saved at results/COMPARE/cph_geodk/maps_interactive/overundershoots_3_3_compare.html

3.网络组件

见链接

4.概括

见链接

5.保存结果

见链接

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/345557.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Oracle篇—实例中和name相关参数的区别和作用

☘️博主介绍☘️&#xff1a; ✨又是一天没白过&#xff0c;我是奈斯&#xff0c;DBA一名✨ ✌✌️擅长Oracle、MySQL、SQLserver、Linux&#xff0c;也在积极的扩展IT方向的其他知识面✌✌️ ❣️❣️❣️大佬们都喜欢静静的看文章&#xff0c;并且也会默默的点赞收藏加关注❣…

如何将jpg图片大小压缩?这个方法建议收藏

如何将jpg图片大小压缩&#xff1f;平时在分享jpg图片的时候&#xff0c;如果遇到图片过大无法使用的情况&#xff0c;可以试试本文分享的这个方法&#xff0c;通过图片在线处理工具压缩jpg文件大小&#xff0c;还不会操作的小伙伴也不用担心&#xff0c;下面小编会详细介绍jpg…

2024-01-09 Android.mk 根据c文件名插入特定的宏定义,我这里用于定义log LOG_TAG 标签

一、在Android的构建系统中&#xff0c;使用Android.mk构建脚本可以根据特定需求来定义宏。如果你想根据C文件的名称来插入特定的宏定义&#xff0c;可以使用条件语句检查文件名&#xff0c;并相应地设置宏。 在Android的构建系统中&#xff0c;使用Android.mk构建脚本可以根据…

C/S架构,集成三维影像后处理功能,自主版权的一套医院PACS系统源码

一、PACS简介 PACS&#xff08;PictureArchivingandCommunicationsSystem&#xff09;即图像存储与传输系统&#xff0c;是应用于医院的数字医疗设备如CT、MR&#xff08;磁共振&#xff09;、US&#xff08;超声成像&#xff09;、X光机、DSA&#xff08;数字减影&#xff09…

【C语言期末】基于VS2022的学生成绩管理系统(2)

诚接计算机专业编程任务(C语言、C、Python、Java、HTML、JavaScript、Vue等)10/15R&#xff0c;如有需要请私信我&#xff0c;或者加我的企鹅号&#xff1a;1404293476 本文资源&#xff1a;https://download.csdn.net/download/weixin_47040861/88737450 1.题目要求 设计题目…

探索设计模式的魅力:简单工厂模式

简单工厂模式&#xff08;Simple Factory Pattern&#xff09;是一种创建型设计模式&#xff0c;其主要目的是用于创建对象的实例。这种模式通过封装创建对象的代码来降低客户代码与具体类之间的耦合度。简单工厂不是GoF&#xff08;四人帮&#xff09;设计模式之一&#xff0c…

Java合并两个有序链表

思路&#xff1a; 创建一个临时的节点&#xff0c;命名傀儡节点&#xff0c;可以理解成临时的头节点&#xff0c;newHead&#xff0c;list1和list2的两两元素比较&#xff0c;小的连接newHead&#xff08;升序&#xff09;newHead的路径&#xff08;蓝色&#xff09;就是连接后…

第8章-第4节-Java中字节流的缓冲流

1、缓冲流&#xff1a;属于高级IO流&#xff0c;并不能直接读写数据&#xff0c;需要依赖于基础流。缓冲流的目的是为了提高文件的读写效率&#xff1f;那么是如何提高文件的读写效率的呢&#xff1f; 在内存中设置一个缓冲区&#xff0c;缓冲区的默认大小是8192字节&#xff…

VScode全局搜索屏蔽、显示屏蔽指定文件类型及文件夹

1.键盘上按快捷键“ crtl 逗号 ”启动设置界面 crtl ,设置界面显示如下&#xff1a; 2.搜索屏蔽 2.1.输入 search.exclude search.exclude 设置界面显示如下&#xff1a; 2.2. 点击下图红色箭头“Add Pattern”&#xff0c;添加想要屏蔽的文件类型或文件夹 **/*.git *…

python + selenium 初步实现数据驱动

如果在进行自动化测试的时候将测试数据写在代码中&#xff0c;若测试数据有变&#xff0c;不利于数据的修改和维护。但可以尝试通过将测试数据放到excel文档中来实现测试数据的管理。 示例&#xff1a;本次涉及的项目使用的12306 selenium 重构------三层架构 excel文件数据如…

Java项目:03 基于Springboot的销售培训考评管理系统

项目介绍 企业的销售要进行培训&#xff0c;由技术人员进行辅导并考评检测培训效果&#xff0c;所以有了这个小系统。实现了系统的登录验证、请求拦截验证、基础模块&#xff08;用户管理、角色管理、销售管理&#xff09;、业务模块&#xff08;评分管理、评分结果&#xff0…

使用 Docker 进行 Go 应用程序引导指南

为在 Docker 中部署的 Go 应用程序做准备 在使用 Go 开发 Web 应用程序时&#xff0c;无论是用于 HTTP 还是其他类型的服务&#xff0c;部署到不同的阶段或环境&#xff08;本地开发、生产环境等&#xff09;都是一个常见的考虑因素。在本文中&#xff0c;我们将探讨在 Docker …