基于Yolov8的纸箱破损检测系统

目录

1.Yolov8介绍

2.纸箱破损数据集介绍

2.1数据集划分

2.2 通过voc_label.py得到适合yolov8训练需要的

2.3生成内容如下

3.训练结果分析

 4. 纸张破损检测系统设计

4.1 PySide6介绍

4.2 安装PySide6

 4.3 纸张破损检测系统设计


1.Yolov8介绍

         Ultralytics YOLOv8是Ultralytics公司开发的YOLO目标检测和图像分割模型的最新版本。YOLOv8是一种尖端的、最先进的(SOTA)模型,它建立在先前YOLO成功基础上,并引入了新功能和改进,以进一步提升性能和灵活性。它可以在大型数据集上进行训练,并且能够在各种硬件平台上运行,从CPU到GPU。

具体改进如下:

  1. Backbone:使用的依旧是CSP的思想,不过YOLOv5中的C3模块被替换成了C2f模块,实现了进一步的轻量化,同时YOLOv8依旧使用了YOLOv5等架构中使用的SPPF模块;

  2. PAN-FPN:毫无疑问YOLOv8依旧使用了PAN的思想,不过通过对比YOLOv5与YOLOv8的结构图可以看到,YOLOv8将YOLOv5中PAN-FPN上采样阶段中的卷积结构删除了,同时也将C3模块替换为了C2f模块;

  3. Decoupled-Head:是不是嗅到了不一样的味道?是的,YOLOv8走向了Decoupled-Head;

  4. Anchor-Free:YOLOv8抛弃了以往的Anchor-Base,使用了Anchor-Free的思想;

  5. 损失函数:YOLOv8使用VFL Loss作为分类损失,使用DFL Loss+CIOU Loss作为分类损失;

  6. 样本匹配:YOLOv8抛弃了以往的IOU匹配或者单边比例的分配方式,而是使用了Task-Aligned Assigner匹配方式

框架图提供见链接:Brief summary of YOLOv8 model structure · Issue #189 · ultralytics/ultralytics · GitHub

2.纸箱破损数据集介绍

道路破损数据集大小1065,类别一类:defect,按照8:1:1进行数据集随机生成。

2.1数据集划分

通过split_train_val.py得到trainval.txt、val.txt、test.txt  

# coding:utf-8import os
import random
import argparseparser = argparse.ArgumentParser()
#xml文件的地址,根据自己的数据进行修改 xml一般存放在Annotations下
parser.add_argument('--xml_path', default='Annotations', type=str, help='input xml label path')
#数据集的划分,地址选择自己数据下的ImageSets/Main
parser.add_argument('--txt_path', default='ImageSets/Main', type=str, help='output txt label path')
opt = parser.parse_args()trainval_percent = 0.9
train_percent = 0.8
xmlfilepath = opt.xml_path
txtsavepath = opt.txt_path
total_xml = os.listdir(xmlfilepath)
if not os.path.exists(txtsavepath):os.makedirs(txtsavepath)num = len(total_xml)
list_index = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list_index, tv)
train = random.sample(trainval, tr)file_trainval = open(txtsavepath + '/trainval.txt', 'w')
file_test = open(txtsavepath + '/test.txt', 'w')
file_train = open(txtsavepath + '/train.txt', 'w')
file_val = open(txtsavepath + '/val.txt', 'w')for i in list_index:name = total_xml[i][:-4] + '\n'if i in trainval:file_trainval.write(name)if i in train:file_train.write(name)else:file_val.write(name)else:file_test.write(name)file_trainval.close()
file_train.close()
file_val.close()
file_test.close()

2.2 通过voc_label.py得到适合yolov8训练需要的

# -*- coding: utf-8 -*-
import xml.etree.ElementTree as ET
import os
from os import getcwdsets = ['train', 'val']
classes = ["defect"]   # 改成自己的类别
abs_path = os.getcwd()
print(abs_path)def convert(size, box):dw = 1. / (size[0])dh = 1. / (size[1])x = (box[0] + box[1]) / 2.0 - 1y = (box[2] + box[3]) / 2.0 - 1w = box[1] - box[0]h = box[3] - box[2]x = x * dww = w * dwy = y * dhh = h * dhreturn x, y, w, hdef convert_annotation(image_id):in_file = open('Annotations/%s.xml' % (image_id), encoding='UTF-8')out_file = open('labels/%s.txt' % (image_id), 'w')tree = ET.parse(in_file)root = tree.getroot()size = root.find('size')w = int(size.find('width').text)h = int(size.find('height').text)for obj in root.iter('object'):difficult = obj.find('difficult').text#difficult = obj.find('Difficult').textcls = obj.find('name').textif cls not in classes or int(difficult) == 1:continuecls_id = classes.index(cls)xmlbox = obj.find('bndbox')b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),float(xmlbox.find('ymax').text))b1, b2, b3, b4 = b# 标注越界修正if b2 > w:b2 = wif b4 > h:b4 = hb = (b1, b2, b3, b4)bb = convert((w, h), b)out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')wd = getcwd()
for image_set in sets:if not os.path.exists('labels/'):os.makedirs('labels/')image_ids = open('ImageSets/Main/%s.txt' % (image_set)).read().strip().split()list_file = open('%s.txt' % (image_set), 'w')for image_id in image_ids:list_file.write(abs_path + '/images/%s.jpg\n' % (image_id))convert_annotation(image_id)list_file.close()

2.3生成内容如下

 

 

3.训练结果分析

confusion_matrix.png :列代表预测的类别,行代表实际的类别。其对角线上的值表示预测正确的数量比例,非对角线元素则是预测错误的部分。混淆矩阵的对角线值越高越好,这表明许多预测是正确的。

 

 上图是道路破损检测训练,有图可以看出 ,分别是破损和background FP。该图在每列上进行归一化处理。则可以看出破损检测预测正确的概率为91%。

F1_curve.png:F1分数与置信度(x轴)之间的关系。F1分数是分类的一个衡量标准,是精确率和召回率的调和平均函数,介于0,1之间。越大越好。

TP:真实为真,预测为真;

FN:真实为真,预测为假;

FP:真实为假,预测为真;

TN:真实为假,预测为假;

精确率(precision)=TP/(TP+FP)

召回率(Recall)=TP/(TP+FN)

F1=2*(精确率*召回率)/(精确率+召回率)

 

 labels_correlogram.jpg :显示数据的每个轴与其他轴之间的对比。图像中的标签位于 xywh 空间。

 

 labels.jpg :

(1,1)表示每个类别的数据量

(1,2)真实标注的 bounding_box

(2,1) 真实标注的中心点坐标

(2,2)真实标注的矩阵宽高

 

 P_curve.png:表示准确率与置信度的关系图线,横坐标置信度。由下图可以看出置信度越高,准确率越高。

 

 PR_curve.png :PR曲线中的P代表的是precision(精准率)R代表的是recall(召回率),其代表的是精准率与召回率的关系。

 

 R_curve.png :召回率与置信度之间关系

 

 results.png

 mAP_0.5:0.95表示从0.5到0.95以0.05的步长上的平均mAP.

 

 预测结果:

 

 4. 纸张破损检测系统设计

4.1 PySide6介绍

        受益于人工智能的崛起,Python语言几乎以压倒性优势在众多编程语言中异军突起,成为AI时代的首选语言。在很多情况下,我们想要以图形化方式将我们的人工智能算法打包提供给用户使用,这时候选择以python为主的GUI框架就非常合适了。

        PySide是Qt公司的产品,PyQt是第三方公司的产品,二者用法基本相同,不过在使用协议上却有很大差别。PySide可以在LGPL协议下使用,PyQt则在GPL协议下使用。

        PySide目前常见的有两个版本:PySide2和PySide6。PySide2由C++版的Qt5开发而来.,而PySide6对应的则是C++版的Qt6。从PySide6开始,PySide的命名也会与Qt的大版本号保持一致,不会再出现类似PySide2对应Qt5这种容易混淆的情况。

4.2 安装PySide6

pip install --upgrade pip
pip install pyside6 -i https://mirror.baidu.com/pypi/simple

基于PySide6开发GUI程序包含下面三个基本步骤:

  • 设计GUI,图形化拖拽或手撸;
  • 响应UI的操作(如点击按钮、输入数据、服务器更新),使用信号与Slot连接界面和业务;
  • 打包发布;

 4.3 纸张破损检测系统设计

系统如下,支持图形输入,摄像头,rtsp流等:

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/3499.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Uniapp_分包

前言:由于微信小程序的包只限制压缩不能超过2M,当开发的页面过多就要进行分包操作,tabbar页面不能进行分包其他页面可以 最多5个分包 不超过20M 第一步、找到这个位置 然后把这个代码复制进去 开启分包 "optimization" : {"subPackages&…

目录拆分爆破工具

burp开启被动扫描获取到大量target或者爬虫获取到大量target时,经常会出现以下URL的情况,手工无法对目录进行拆分进行简单的目录爆破,所以有了这款工具,思路比较简单,望批评指教。 http://target/path1/path2/path3/* …

vue使用emit控制改变父组件的值,实现子组件的显示与隐藏

vue使用emit控制改变父组件的值,实现子组件的显示与隐藏 需求概述 父组件在提交表单后,弹框进行提示,子组件是一个弹框。 vue版本 v2.x 实现原理 在父组件内建立控制器isShowModal,使用v-if来控制子组件的显示与隐藏。在子组…

强化学习从基础到进阶-案例与实践[5.1]:Policy Gradient-Cart pole游戏展示

强化学习从基础到进阶-案例与实践[5.1]:Policy Gradient-Cart pole游戏展示 强化学习(Reinforcement learning,简称RL)是机器学习中的一个领域,区别与监督学习和无监督学习,强调如何基于环境而行动&#x…

win10安装配置PostgreSQL

win10安装配置PostgreSQL 1 下载安装PostgreSQL ①进入官网https://www.postgresql.org/,点击页面中心处的download 也可以直接跳过下面的步骤(下面的步骤主要是为了帮助大家了解一般外国软件是如何从官网进入下载页面),直接进入下载页面,链…

java的注解方式和xml方式这两种方式对数据库进行操作详解

首先需要引入mybatisplus包 <dependency><groupId>com.baomidou</groupId><artifactId>mybatis-plus-boot-starter</artifactId><version>3.1.1</version> </dependency>第一种注解方式&#xff1a;参数是通过#{}来接收的 p…

LLaMA模型微调版本 Vicuna 和 Stable Vicuna 解读

Vicuna和StableVicuna都是LLaMA的微调版本&#xff0c;均遵循CC BY-NC-SA-4.0协议&#xff0c;性能方面Stable版本更好些。 CC BY-NC-SA-4.0是一种知识共享许可协议&#xff0c;其全称为"署名-非商业性使用-相同方式共享 4.0 国际"。 即 用的时候要署名原作者&#x…

信号链噪声分析18

文章目录 概要整体架构流程技术名词解释技术细节小结 概要 提示&#xff1a;这里可以添加技术概要 到目前为止&#xff0c;我们考虑的是基带采样情况&#xff0c;即所有目标信号均位于第一奈奎斯特区内。 图 显示了另外一种情况&#xff0c;其中采样信号频带局限于第一奈奎斯…

碳排放预测模型 | Python实现基于LR线性回归的碳排放预测模型

文章目录 效果一览文章概述研究内容源码设计参考资料效果一览 文章概述 碳排放预测模型 | Python实现基于LR线性回归的碳排放预测模型 研究内容 碳排放被认为是全球变暖的最主要原因之一。 该项目旨在提供各国碳排放未来趋势的概述以及未来十年的全球趋势预测。 其方法是分析这…

【前端】导航栏html(ul+li)/css/js(jq)

引入jq <script src"https://cdn.staticfile.org/jquery/1.10.2/jquery.min.js"></script> css代码 <style>ul {list-style: none;margin: 0;padding: 0;}li {cursor: pointer;}.color-white {color: #FFFFFF !important;background-color: rgb…

9.用python写网络爬虫,完结

前言 这是python网络爬虫的最后一篇给大家做个总结&#xff0c;且看且珍惜把&#xff01; 截止到目前&#xff0c; 前几章本书介绍的爬虫技术都应用于一个定制网站&#xff0c;这样可以帮助我们更加专注于学习特定技巧。而在本章中&#xff0c;我们将分析几个真实网站&#xff…

桥接模式(Bridge)

定义 桥接是一种结构型设计模式&#xff0c;可将一个大类或一系列紧密相关的类拆分为抽象和实现两个独立的层次结构&#xff0c;从而能在开发时分别使用。 前言 1. 问题 假如你有一个几何形状&#xff08;Shape&#xff09;类&#xff0c; 从它能扩展出两个子类&#xff1a…