中科院自动化所:基于关系图深度强化学习的机器人多目标包围问题新算法

摘要:中科院自动化所蒲志强教授团队,提出一种基于关系图的深度强化学习方法,应用于多目标避碰包围(MECA)问题,使用NOKOV度量动作捕捉系统获取多机器人位置信息,验证了方法的有效性和适应性。研究成果在2022年ICRA大会发表。

在多机器人系统的研究领域中,包围控制是一个重要的课题。其在民用和军事领域都有广泛的应用场景,包括协同护航、捕获敌方目标、侦察监视、无人水面舰艇巡逻狩猎等。

这些应用的核心问题是如何控制一个多机器人系统,涉及多目标分配,同时解决目标包围和避碰子问题。这是一个巨大的挑战,特别是对于分散的多机器人系统。

中科院自动化所蒲志强教授团队在2022年ICRA大会发表论文,提出了一种基于关系图的深度强化学习方法,对各种条件下的多目标避碰包围(MECA)问题具有良好的适应性。

在这里插入图片描述

定义任务

该研究定义了一个MECA任务,即在具有L个静态障碍物(黑色圆圈)的环境中,由N个机器人(绿色圆圈)组成的多机器人系统,协同包围K (1 < K < N)个静止或运动的目标(红色圆圈)。

所有机器人需要自动形成多组,包围所有目标,每组需要形成圆形队形,包围一个独立的目标,同时避免碰撞。这涉及到以下三个子问题:

  1. 动态多目标分配与分组
  2. 每组分别包围目标
  3. 相互之间避免碰撞

分散式多机器人系统的MECA图解

方法框架

在MECA问题中,存在三种类型的实体,即机器人、目标和障碍物。不同的实体对机器人有不同的影响关系,例如避障、包围目标、与其他机器人合作等。

研究提出了一种基于机器人级和目标级关系图(RGs)的DRL分散方法,命名为MECA-DRL-RG方法。

具体而言:

  1. 利用图注意网络(GATs)对机器人级RGs进行建模和学习,该RGs由每个机器人与其他机器人、目标和障碍物之间的三个异构关系图组成。

  2. 利用GAT构建目标级RG,构建机器人与各目标之间的空间关系。目标的运动由目标级RG建模,并通过监督学习进行学习,以预测目标的轨迹。

  3. 此外,定义了一个知识嵌入式复合奖励函数,解决MECA中的多目标问题。采用基于集中式训练和去中心化执行框架的演员-评论家训练算法对策略网络进行训练。
    MECA-DRL-RG方法的整体结构

实验验证

研究团队分别进行了仿真实验和真实环境实验。在真实实验中,情景设置为:6个机器人在有2个障碍物的环境中包围2个移动的目标。机器人的位置和速度数据由NOKOV度量动作捕捉系统提供。

6个机器人在有2个障碍物的环境中包围2个移动目标

仿真实验和真实实验都验证了,相比于其他方法,MECA-DRL-RG方法使机器人能够从周围环境中,学习异构空间关系图,并预测目标的轨迹,从而促进每个机器人对其周围环境的理解和预测。证实了MECA-DRL-RG方法的有效性。

并且,无论机器人、障碍物或目标的数量增加,抑或是目标的移动速度加快,MECA-DRL-RG方法都表现出良好的性能,具有广泛的适应性。

MECA-DRL-RG方法训练曲线

参考文献:
T. Zhang, Z. Liu, Z. Pu and J. Yi, “Multi-Target Encirclement with Collision Avoidance via Deep Reinforcement Learning using Relational Graphs,” 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 2022, pp. 8794-8800, doi: 10.1109/ICRA46639.2022.9812151.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/409599.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【征服redis5】redis的Redisson客户端

目录 1 Redisson介绍 2. 与其他Java Redis客户端的比较 3.基本的配置与连接池 3.1 依赖和SDK 3.2 配置内容解析 4 实战案例&#xff1a;优雅的让Hash的某个Field过期 5 Redisson的强大功能 1 Redisson介绍 Redisson 最初由 GitHub 用户 “mrniko” 创建&#xff0c;并在…

RPA与通知机器人的完美结合

写在前面 在现代快节奏的工作环境中&#xff0c;我们经常会面临多个任务同时进行的情况&#xff0c;你还在为时间不够用、忙碌而惆怅吗&#xff1f;你还在为时刻盯着电脑流程而烦恼吗&#xff1f;你还在为及时收不到自己的自动化任务进度而焦躁吗&#xff1f;别担心&#xff0…

matlab快速入门(读取数据并绘制散点图和拉格朗日插值

目录 1.读取excel&#xff1a;2.注释快捷键&#xff1a;3.数组/矩阵索引&#xff1a;4.绘制散点图&#xff1a;5.拉格朗日插值&#xff1a;5.1分割出非空和空的x和y两组数据&#xff1a;5.2插值&#xff1a;5.3画图&#xff1a; 小结&#xff1a; 1.读取excel&#xff1a; [nu…

AI对决:ChatGPT与文心一言的比较

文章目录 引言ChatGPT与文心一言的比较Chatgpt的看法文心一言的看法Copilot的观点chatgpt4.0的回答 模型的自我评价自我评价 ChatGPT的优势在这里插入图片描述 文心一言的优势AI技术发展趋势总结 引言 在过去的几年里&#xff0c;人工智能&#xff08;AI&#xff09;技术取得了…

十、Qt 操作PDF文件

《一、QT的前世今生》 《二、QT下载、安装及问题解决(windows系统)》《三、Qt Creator使用》 ​​​ 《四、Qt 的第一个demo-CSDN博客》 《五、带登录窗体的demo》 《六、新建窗体时&#xff0c;几种窗体的区别》 《七、Qt 信号和槽》 《八、Qt C 毕业设计》 《九、Qt …

Jenkins集成Sonar Qube

下载插件 重启Jenkins 容器 sonarqube 使用令牌 Jenkins 配置 重新构建

部署SD-WAN需要哪些设备和软件?

企业网络需求不断增加&#xff0c;越来越多的企业选择采用SD-WAN组网以提升网络性能和管理效率。在部署SD-WAN组网专线时&#xff0c;需要一系列特定的设备和软件来支持和管理网络。本文将对这些设备和软件进行详细介绍。 SD-WAN控制器&#xff1a; SD-WAN控制器是SD-WAN组网的…

vue3实现动态侧边菜单栏的几种方式总结

基于自建json数据的动态侧边菜单栏 后端接口json数据 src/api/menuList.js const menuList [{url: ,name: 人员管理,icon: icon-renyuan,menuId: 1,children: [{url: /user,name: 用户管理,icon: icon-jurassic_user,menuId: 1001,children: []},{url: /role,name: 角色管…

Qt第二周周二作业

代码&#xff1a; widget.h #ifndef WIDGET_H #define WIDGET_H#include <QWidget>QT_BEGIN_NAMESPACE namespace Ui { class Widget; } QT_END_NAMESPACEclass Widget : public QWidget {Q_OBJECTpublic:Widget(QWidget *parent nullptr);~Widget();void paintEvent(…

smartgit选择30天试用后需要输入可执行文件

突然有一天smartgit提示到期了&#xff0c;我按照以往那样删除license和preferences文件后&#xff0c;选择30天试用&#xff0c;弹出了需要选择git可执行文件。 我尝试选择了我的git.exe&#xff0c;发现根本不行&#xff0c;提示让我执行下git --version 执行过后提示我的.gi…

力扣hot100 颜色分类 双指针 滚动赋值

Problem: 75. 颜色分类 文章目录 思路解题方法复杂度Code&#x1f496; 超简洁版 思路 解题方法 描述你的解题方法 复杂度 时间复杂度: O ( n ) O(n) O(n) 空间复杂度: O ( 1 ) O(1) O(1) Code class Solution { public void sortColors(int[] nums){int n nums.length…

单列的堆叠柱状图

目的 MSingleColumnStackBarChart类被设计用于创建只有单列的堆叠柱状图&#xff0c;用于血糖数据的统计。以下是封装这个类的目的的详细描述&#xff1a; 抽象复杂性&#xff1a; 通过创建MSingleColumnStackBarChart类&#xff0c;你将复杂的MPAndroidChart库的使用和配置封…