数据结构奇妙旅程之二叉树初阶

꒰˃͈꒵˂͈꒱ write in front ꒰˃͈꒵˂͈꒱
ʕ̯•͡˔•̯᷅ʔ大家好,我是xiaoxie.希望你看完之后,有不足之处请多多谅解,让我们一起共同进步૮₍❀ᴗ͈ . ᴗ͈ აxiaoxieʕ̯•͡˔•̯᷅ʔ—CSDN博客
本文由xiaoxieʕ̯•͡˔•̯᷅ʔ 原创 CSDN 如需转载还请通知˶⍤⃝˶
个人主页:xiaoxieʕ̯•͡˔•̯᷅ʔ—CSDN博客
系列专栏:xiaoxie的JAVA系列专栏——CSDN博客●'ᴗ'σσணღ*
我的目标:"团团等我💪( ◡̀_◡́ ҂)" 

( ⸝⸝⸝›ᴥ‹⸝⸝⸝ )欢迎各位→点赞👍 + 收藏⭐️ + 留言📝​+关注(互三必回)!

 一.树

1.概念(简单了解即可)

树是一种 非线性 的数据结构,它是由 n n>=0 )个有限结点组成一个具有层次关系的集合。 把它叫做树是因为它看
起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的 。它具有以下的特点:
有一个特殊的结点,称为根结点,根结点没有前驱结点
除根结点外,其余结点被分成 M(M > 0) 个互不相交的集合 T1 T2 ...... Tm ,其中每一个集合 Ti (1 <= i <= m) 又是一棵与树类似的子树。
每棵子树的根结点有且只有一个前驱,可以有 0 个或多个后继 。树是递归定义的。

注意:树形结构中,子树之间不能有交集,否则就不是树形结构

2.树的基本术语

2.1需要重点记忆的

结点的度:一个结点含有子树的个数称为该结点的度; 如上图:A的度为3

树的度 :一棵树中,所有结点度的最大值称为树的度; 如上图:树的度为3
叶子结点或终端结点 :度为 0 的结点称为叶结点; 如上图:E, F, G, H, I, J 等节点为叶结点
双亲结点或父结点 :若一个结点含有子结点,则这个结点称为其子结点的父结点; 如上图: A B 的父结点
孩子结点或子结点 :一个结点含有的子树的根结点称为该结点的子结点; 如上图: B A 的孩子结点
根结点 :一棵树中,没有双亲结点的结点;如上图: A
结点的层次 :从根开始定义起,根为第 1 层,根的子结点为第 2 层,以此类推
树的高度或深度 :树中结点的最大层次; 如上图:树的高度为3

2.2简单了解即可

非终端结点或分支结点 :度不为 0 的结点; 如上图:B 、C 、D 等节点为分支结点
兄弟结点 :具有相同父结点的结点互称为兄弟结点; 如上图: B C 是兄弟结点
堂兄弟结点 :双亲在同一层的结点互为堂兄弟;如上图: H I 互为兄弟结点
结点的祖先 :从根到该结点所经分支上的所有结点;如上图: A 是所有结点的祖先
子孙 :以某结点为根的子树中任一结点都称为该结点的子孙。如上图:所有结点都是 A 的子孙
森林 :由 m m>=0 )棵互不相交的树组成的集合称为森林

3.树的代码表示形式(简单了解)

树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,实际中树有很多种表示方式,如:双亲表示法

孩子表示法 孩子双亲表示法 孩子兄弟表示法 等等。我们这里就简单的了解其中最常用的 孩子兄弟表示法
class Node {
int value; // 树中存储的数据
Node firstChild; // 第一个孩子引用
Node nextBrother; // 下一个兄弟引用
}

二.二叉树(重点掌握)

1.概念

一棵二叉树是结点的一个有限集合,该集合:

1. 或者为空
2. 或者是由 一个根节 点加上两棵别称为 左子树 右子树 的二叉树组成。
从上图可以看出:
1. 二叉树不存在度大于 2 的结点
2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树
注意:对于任意的二叉树都是由以下几种情况复合而成的:

1.1二叉树的基本形态

1.2两种特殊的二叉树

1. 满二叉树 : 一棵二叉树,如果 每层的结点数都达到最大值,则这棵二叉树就是满二叉树 。也就是说, 如果一棵 二叉树的层数为 K ,且结点总数是 2^k - 1  ,则它就是满二叉树
2. 完全二叉树 : 完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为 K 的,有 n
个结点的二叉树,当且仅当其每一个结点都与深度为 K 的满二叉树中编号从 0 n-1 的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。

 2.性质

1. 若规定 根结点的层数为 1 ,则一棵 非空二叉树的第 i 层上最多有 2^(i-1)  (i>0) 个结点
2. 若规定只有 根结点的二叉树的深度为 1 ,则 深度为 K 的二叉树的最大结点数是2^k - 1
(k>=0)
3. 对任何一棵二叉树 , 如果其 叶结点个数为 n0, 度为 2 的非叶结点个数为 n2, 则有 n0 n2 1
4. 具有 n 个结点的完全二叉树的深度 k 为 log2(n+1)  上取整
5. 对于具有 n 个结点的完全二叉树 ,如果按照 从上至下从左至右的顺序对所有节点从 0 开始编号 ,则对于 序号为 i 的结点有
i>0 双亲序号: (i-1)/2 i=0 i 为根结点编号 ,无双亲结点
2i+1<n ,左孩子序号: 2i+1 ,否则无左孩子
2i+2<n ,右孩子序号: 2i+2 ,否则无右孩子

3.基本操作

public class BinaryTree {static class TreeNode {public char val;public TreeNode left;public TreeNode right;public TreeNode(char val) {this.val = val;}}//以穷举的方式 创建一棵二叉树出来public TreeNode createTree() {TreeNode A = new TreeNode('A');TreeNode B = new TreeNode('B');TreeNode C = new TreeNode('C');TreeNode D = new TreeNode('D');TreeNode E = new TreeNode('E');TreeNode F = new TreeNode('F');TreeNode G = new TreeNode('G');TreeNode H = new TreeNode('H');A.left = B;A.right = C;B.left = D;B.right = E;C.left = F;C.right = G;E.right = H;return A;}//前序遍历public void preOrder(TreeNode root) {if(root == null) {return;}System.out.print(root.val + " ");preOrder(root.left);preOrder(root.right);}//中序遍历public void inOrder(TreeNode root) {if(root == null){return;}inOrder(root.left);System.out.print(root.val + " ");inOrder(root.right);}//后序遍历public void postOrder(TreeNode root) {if(root == null){return;}postOrder(root.left);postOrder(root.right);System.out.print(root.val + " ");}// 获取二叉树中节点的个数public int size(TreeNode root) {if(root == null) {return 0;}return size(root.left)+size(root.right)+1;}// 获取叶子节点的个数public int getLeafNodeCount(TreeNode root) {if(root == null) {return 0;}if(root.left == null && root.right == null) {return 1;}return getLeafNodeCount(root.left) + getLeafNodeCount(root.right);}// 获取第K层节点的个数public int getKLevelNodeCount(TreeNode root,int k) {if(root == null) {return 0;}if(k == 1) {return 1;}return getKLevelNodeCount(root.left,k-1) + getKLevelNodeCount(root.right,k-1);}// 获取二叉树的高度public int getHeight(TreeNode root) {if(root == null) {return 0;}int leftH = getHeight(root.left);int rightH = getHeight(root.right);return Math.max(leftH,rightH)+1;}// 检测值为value的元素是否存在public boolean find(TreeNode root,char val) {if(root == null) {return false;}if(root.val == val) {return true;}return find(root.left, val) || find(root.right, val);}//层序遍历使用队列来辅助//当涉及到层序遍历时,通常情况下使用队列来实现会更为简单和高效public void levelOrder(TreeNode root) {if(root == null) {return;}Queue<TreeNode> q = new LinkedList<>();q.offer(root);while (!q.isEmpty()) {TreeNode cur = q.poll();System.out.print(cur.val + " ");if(cur.left != null) {q.offer(cur.left);}if(cur.right != null) {q.offer(cur.right);}}}// 判断一棵树是不是完全二叉树public boolean isCompleteTree(TreeNode root) {if (root == null) {return true;}Queue<TreeNode> queue = new LinkedList<>();queue.offer(root);boolean end = false;while (!queue.isEmpty()) {TreeNode current = queue.poll();if (current == null) {end = true;} else {if (end) {return false; // 如果已经遇到空节点,再遇到非空节点,说明不是完全二叉树}queue.offer(current.left);queue.offer(current.right);}}return true;}
}

 三.说明

以上就是关于二叉树的一些基础问题了,如果你已经对这些比较基础的问题都大概了解,就可以开始尝试做题,你也可以移步到博主的下一篇关于二叉树面试题的文章,帮助你更好的掌握二叉树,感谢你的观看,愿你一天开心愉快

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/410515.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【SpringBoot框架篇】35.kafka环境搭建和收发消息

kafka环境搭建 kafka依赖java环境,如果没有则需要安装jdk yum install java-1.8.0-openjdk* -y1.下载安装kafka kafka3.0版本后默认自带了zookeeper&#xff0c;3.0之前的版本需要单独再安装zookeeper,我使用的最新的3.6.1版本。 cd /usr/local wget https://dlcdn.apache.…

洗地机怎么选?热门洗地机选购要点指南

洗地机的创新设计确实为清洁地面提供了更加高效和便捷的解决方案。相较于传统的清洁方式&#xff0c;洗地机具备自动化、深度清洁、消毒杀菌等功能&#xff0c;大大减轻了家庭清洁的负担。它不仅能够快速扫除灰尘和杂物&#xff0c;还能进行湿拖地操作&#xff0c;保持地面的清…

跟着cherno手搓游戏引擎【6】ImGui和ImGui事件

导入ImGui&#xff1a; 下载链接&#xff1a; GitHub - TheCherno/imgui: Dear ImGui: Bloat-free Immediate Mode Graphical User interface for C with minimal dependencies 新建文件夹&#xff0c;把下载好的文件放入对应路径&#xff1a; SRC下的premake5.lua文件&#…

好消息,Linux Kernel 6.7正式发布!

据有关资料显示&#xff0c;该版本是有史以来合并数最多的版本之一&#xff0c;包含 17k 个非合并 commit&#xff0c;实际合并的超过1K个。 那么该版本主要有哪边变化呢&#xff1f;下面我来一一列举一下&#xff1a; Bcachefs文件系统已被合并到主线内核&#xff0c;这是一款…

23111 网络编程 day4

思维导图 #include<myhead.h> #define SER_PORT 69 #define SER_IP "192.168.125.180"int do_download(int cfd,struct sockaddr_in sin) {//向服务器发送下载请求char buf[516]"";char fileName[40]"";printf("请输入文件名&#xf…

Simulink|双机并联自适应虚拟阻抗下垂控制仿真模型

目录 主要内容 模型研究 结果一览 下载链接 主要内容 风电高渗透率下&#xff0c;电力系统对风电场频率调节能力提出了技术要求。考虑风机惯性控制和变桨距控制的频率响应能力&#xff0c;提出将储能与风电自身调频手段相结合&#xff0c;参与系统频率调节。模型…

Spring高手之路-Spring在业务中常见的使用方式

目录 通过IOC实现策略模式 通过AOP实现拦截增强 1.参数检验 2.缓存逻辑 3.日志记录 通过Event异步解耦 通过Spring管理事务 1.声明式事务 2.编程式事务 3.需要注意的问题 不能在事务中处理分布式缓存 不能在事务中执行 RPC 操作 不过度使用声明式事务 通过IOC实现…

C++初入(四)

1.万能头文件 #include <bits/stdc.h> 里面包含了大量我们日常所需的头文件&#xff0c;如果使用它&#xff0c;我们就可以减少大量时间去写头文件&#xff0c;但是其实在平常练习和实际运用中&#xff0c;该头文件几乎没有实际价值&#xff0c;原因&#xff1a;1.里面…

SpringBoot教程(七) | SpringBoot解决跨域问题

SpringBoot教程(七) | SpringBoot解决跨域问题 上篇文章我们介绍了SpringBoot的拦截器的写法&#xff0c;其中有一个比较重要的步骤&#xff0c;就是把我们写好的拦截器注册到Spring的一个配置类中&#xff0c;这个类是实现了WebMvcConfigurer 接口&#xff0c;这个类很重要&a…

翻译: Streamlit从入门到精通 高级用法缓存Cache和Session 五

Streamlit从入门到精通 系列&#xff1a; 翻译: Streamlit从入门到精通 基础控件 一翻译: Streamlit从入门到精通 显示图表Graphs 地图Map 主题Themes 二翻译: Streamlit从入门到精通 构建一个机器学习应用程序 三翻译: Streamlit从入门到精通 部署一个机器学习应用程序 四 …

Pytorch基础知识点复习

文章目录 并行计算单卡训练多卡训练单机多卡DP多机多卡DDPDP 与 DDP 的优缺点 PyTorch的主要组成模块Pytorch的主要组成模块包括那些呢&#xff1f;Dataset和DataLoader的作用是什么&#xff0c;我们如何构建自己的Dataset和DataLoader&#xff1f;神经网络的一般构造方法&…

.NET国产化改造探索(三)、银河麒麟安装.NET 8环境

随着时代的发展以及近年来信创工作和…废话就不多说了&#xff0c;这个系列就是为.NET遇到国产化需求的一个闭坑系列。接下来&#xff0c;看操作。 上一篇介绍了如何在银河麒麟操作系统上安装人大金仓数据库&#xff0c;这篇文章详细介绍下在银河麒麟操作系统上安装.NET8环境。…