机器学习之卷积神经网络

卷积神经网络是一类包含卷积计算且具有深度结构的前馈神经网络,是深度学习的代表算法之一。卷积神经网络具有表征学习能力,能够按其阶层结构对输入信息进行平移不变分类,因此又称为SIANN。卷积神经网络仿照生物的视知觉机制构建,可以进行监督学习和非监督学习,其隐含层内的卷积核参数共享和层间连接的稀疏性使得卷积神经网络能够以较小的计算量对格点化特征进行学习。

卷积神经网络的结构包括:输入层、卷积层、池化层、全连接、输出层。
在这里插入图片描述

输入层:整个神经网络的输入,在处理图像的卷积神经网络中,它代表一张图片的像素矩阵,其中三维矩阵长宽代表图像大小,深度代表了图像的色彩通道。

卷积层:卷积层试图将神经网络中的每小块进行更加深入地分析而获得抽象度更高的特征。卷积层神经网络结构中最重要的部分就是过滤器或者叫作内核,过滤器可以将当前神经网络的一个子节点矩阵转化为下一层神经网络的一个单位节点矩阵。过滤器的节点矩阵是三维矩阵(长宽深度),有时候只需给出二维,深度一般和当前神经网络节点深度相同。 特征图尺寸为W2=(W1-F+2P)/S + 1(W2特征图宽,W1输入图像的宽,F表示过滤器的宽,P表示填充零的圈数,S表示步长)

池化层:不改变三维矩阵的深度,但可以缩小矩阵的大小。通过池化层可以进一步缩小最后全连接层中节点的个数,从而达到减小整个神经网络参数的目的。使用池化层即可以加快计算速度也可以有效地防止过拟合问题。 池化层的过滤器是三维矩阵,有时候只需要给出长宽就好,池化层的过滤器只影响一个深度上的节点,即主要减小矩阵的长和宽,深度不变。

全连接层:旨在执行对原始图像的高级抽象,它们将前一层所有的神经元与当前层的每个神经元相连接,在全连接层不保存空间信息。全连接层在整个卷积神经网络中起到“分类器”的作用。全连接层需要进行反向传播进行参数调优,还要向前传递梯度,需要计算三个偏导数:对上一层的输出求导、对权重系数求导、对偏置系数求导。由于全连接层参数冗余,全局平均池化(GAP)取代FC来融合学到的深度特征,用GAP替代FC的网络通常有较好的预测性能。

Softmax层:用于分类,通过softmax层可以得到当前输出属于不同种类的概率分布情况,softmax函数又称归一化指数函数,是对数概率回归在C个不同值上的推广,公式如下:
f ( i ) = e − O i ∑

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/411913.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【k8s】Kubernetes技术和相关命令简介

一、 Kubernetes简介 Kubernetes是Google开源的一个容器编排引擎,它支持自动化部署、大规模可伸缩、应用容器化管理。在生产环境中部署一个应用程序时,通常要部署该应用的多个实例以便对应用请求进行负载均衡。kubernetes,简称K8s&#xff0…

飞桨分子动力学模拟-论文复现第六期:复现TorchMD

飞桨分子动力学模拟-论文复现第六期:复现TorchMD Paddle for MD 飞桨分子动力学模拟科学计算 复现论文-TorchMD: A deep learning framework for molecular simulations 本项目可在AIStudio一键运行:飞桨分子动力学模拟PaddleMD-复现TorchMD 【论文复…

怎么给文件夹设置密码?文件夹设置密码怎么操作?

我们经常会将电脑中的重要数据储存在文件夹中,以方便管理。而为了避免数据泄露,我们需要给文件夹设置密码,以提高文件夹的安全性。那么,怎么给文件夹设置密码呢?下面我们就一起来了解一下。 方法一:文件夹加…

HttpServletRequest getServerPort()、getLocalPort() 、getRemotePort() 区别

getRemotePort() 、getServerPort()、getLocalPort() request.getServerPort()、request.getLocalPort() 和 request.getRemotePort() 这三个方法都是获取与HTTP请求相关的端口信息的 客户端(如浏览器)通过某个随机分配的网络连接端口(7070) 向服务器发送HTTP请求( http://exam…

2024年网络安全比赛--内存取证(超详细)

一、竞赛时间 180分钟 共计3小时 二、竞赛阶段 竞赛阶段 任务阶段 竞赛任务 竞赛时间 分值 1.从内存文件中找到异常程序的进程,将进程的名称作为Flag值提交; 2.从内存文件中找到黑客将异常程序迁移后的进程编号,将迁移后的进程编号作为Flag值…

通过篡改请求方法、Body体、拓展、默认凭证、UA等方法绕过40X页面

免责声明 本文发布的工具和脚本,仅用作测试和学习研究,禁止用于商业用途,不能保证其合法性,准确性,完整性和有效性,请根据情况自行判断。 如果任何单位或个人认为该项目的脚本可能涉嫌侵犯其权利&#xff…

鸿蒙Harmony--AppStorage--应用全局的UI状态存储详解

无所求必满载而归,当你降低期待,降低欲望,往往会得到比较好的结果,把行动交给现在,用心甘情愿的态度,过随遇而安的生活,无论结果如何,都是一场惊喜的获得! 目录 一,定义 …

VS+QT编译环境中字符乱码问题详解

字符乱码问题详解 1 编码字符集与字符编码方式2 字符乱码原因3 字符乱码解决方案 在解释字符乱码问题之前,我们需要先理清一些基本概念 1 编码字符集与字符编码方式 编码字符集 编码字符集是所有字符以及对应代码值的集合。编码字符集中的每个字符都对应一个唯一的…

智能安全帽定制_基于联发科MT6762平台的智能安全帽方案

智能安全帽是一种具备多项功能的高科技产品,其功能集成了视频通话监控、高清图像采集、无线数据传输、语音广播对讲、定位轨迹回放、静默报警、危险救援报警、脱帽报警、碰撞报警、近电报警以及智能调度系统等,同时还支持多功能模块的自由添加&#xff0…

python数字图像处理基础(七)——直方图均衡化、傅里叶变换

目录 直方图均衡化均衡化原理均衡化效果标准直方图均衡化自适应直方图均衡化 傅里叶变换原理低通滤波高通滤波 直方图均衡化 均衡化原理 图像均衡化是一种基本的图像处理技术,通过更新图像直方图的像素强度分布来调整图像的全局对比度。这样做可以使低对比度的区域…

高密数据中心卓越运维,更灵活助力企业 AI 就绪

AIGC的高速发展将企业对基础架构的需求推上了新的层次,根据中国通服数字基建产业研究院发布的《中国数据中心产业发展白皮书(2023)》报告,互联网行业客户对单机柜功率密度的要求较高,一般在6-8kW,金融行业处…

一个小程序跳转到另一个小程序中如何实现

小程序 保证两个小程序是一样的主体才可以跳转。怎么知道是不是同样的主体呢&#xff1f; 小程序的后台管理-设置-基本设置-基本信息。查看主体信息。 跳转 <button clicktoOtherMini()>跳转到另一个小程序</button> function toOtherMini(){wx.navigateToMini…