Backtrader 文档学习-Indicators混合时间框架

Backtrader 文档学习-Indicators混合时间周期

1.不同时间周期

如果数据源在Cerebro引擎中具有不同的时间范围和不同的长度,指示器将会终止。
比如:data0是日线,data1是月线 。

pivotpoint = btind.PivotPoint(self.data1)
sellsignal = self.data0.close < pivotpoint.s1

当收盘低于s1线(第一支撑位)时为卖出信号

PivotPoint可以在更大的时间范围内工作

在以前的版本报错:

return self.array[self.idx + ago]
IndexError: array index out of range

原因是:self.data.close提供第一个bar的值,但PivotPoint(以及s1行)只有在一个完整月过去后才会有值,相当于self.data0.close的22个值。在这22个close值,s1的Line还没有值,从底层数组获取它的尝试失败,报错超出范围。

Line对象支持(ago)运算符(Python中的__call__特殊方法)来传递自身的延迟版本:

close1 = self.data.close(-1)

In this example the object close1 (when accessed via [0]) always contains the previous value (-1) delivered by close. The syntax has been reused to accomodate adapting timeframes. Let’s rewrite the above pivotpoint snippet:

对象close1(通过[0]访问时)始终包含close提供的前一个值(-1)。语法将重写以适应时间框架。重写上面的pivotpoint 片段:

pivotpoint = btind.PivotPoint(self.data1)
sellsignal = self.data0.close < pivotpoint.s1()

看看()是如何在没有参数的情况下执行的(在后台没有提供任何参数)。发生了以下情况:

  • pivotpoint.s1()返回内部LinesCoupler对象,该对象遵循较大范围周期,coupler用来自实际s1的最新值填充,从默认值NaN开始 。

在后面章节中的参数说明:

PivotPoint Formula:

  • pivot = (h + l + c) / 3 # variants duplicate close or add open
  • support1 = 2.0 * pivot - high
  • support2 = pivot - (high - low)
  • resistance1 = 2.0 * pivot - low
  • resistance2 = pivot + (high - low)
    对应计算后的Line:
  • p
  • s1
  • s2
  • r1
  • r2

运行结果:

0069,0069,0014,2005-04-11,3080.60,3043.16,0.00
0070,0070,0014,2005-04-12,3065.18,3043.16,0.00
0071,0071,0014,2005-04-13,3080.54,3043.16,0.00
0072,0072,0014,2005-04-14,3075.33,3043.16,0.00
0073,0073,0014,2005-04-15,3013.89,3043.16,1.00
0074,0074,0015,2005-04-18,2947.79,2988.96,1.00
0075,0075,0015,2005-04-19,2957.37,2988.96,1.00
0076,0076,0015,2005-04-20,2944.33,2988.96,1.00
0077,0077,0015,2005-04-21,2950.34,2988.96,1.00
0078,0078,0015,2005-04-22,2976.39,2988.96,1.00
0079,0079,0016,2005-04-25,2987.05,2935.07,0.00
0080,0080,0016,2005-04-26,2983.22,2935.07,0.00
0081,0081,0016,2005-04-27,2942.62,2935.07,0.00

在长度为74 的时候,close < s1 。出现signal 。

2.代码

from __future__ import (absolute_import, division, print_function,unicode_literals)import argparseimport backtrader as bt
import backtrader.feeds as btfeeds
import backtrader.indicators as btind
import backtrader.utils.flushfileclass St(bt.Strategy):params = dict(multi=True)def __init__(self):self.pp = pp = btind.PivotPoint(self.data1)#print(dir(pp))pp.plotinfo.plot = False  # deactivate plottingif self.p.multi:pp1 = pp()  # couple the entire indicatorsself.sellsignal = self.data0.close < pp1.s1()else:self.sellsignal = self.data0.close < pp.s1()def next(self):txt = ' , '.join(['%04d' % len(self),'%04d' % len(self.data0),'%04d' % len(self.data1),self.data.datetime.date(0).isoformat(),'%.2f' % self.data0.close[0],'%.2f' % self.pp.s1[0],'%.2f' % self.sellsignal[0]])print(txt)def runstrat():args = parse_args()cerebro = bt.Cerebro()data = btfeeds.BacktraderCSVData(dataname=args.data)cerebro.adddata(data)cerebro.resampledata(data, timeframe=bt.TimeFrame.Weeks) # 增加周线cerebro.resampledata(data, timeframe=bt.TimeFrame.Months) # 增加月线cerebro.addstrategy(St, multi=args.multi)cerebro.run(stdstats=False, runonce=False)if args.plot:cerebro.plot(style='bar')def parse_args():parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter,description='Sample for pivot point and cross plotting')parser.add_argument('--data', required=False,default='./datas/2005-2006-day-001.txt',help='Data to be read in')parser.add_argument('--multi', required=False, action='store_true',help='Couple all lines of the indicator')parser.add_argument('--plot', required=False, action='store_true',help=('Plot the result'))return parser.parse_args()if __name__ == '__main__':runstrat()

允许参数说明:

python  ./mixing-timeframes.py --help
usage: mixing-timeframes.py [-h] [--data DATA] [--multi] [--plot]Sample for pivot point and cross plottingoptional arguments:-h, --help   show this help message and exit--data DATA  Data to be read in (default: ./datas/2005-2006-day-001.txt)--multi      Couple all lines of the indicator (default: False)--plot       Plot the result (default: False)

可以看到,日线、周线和月线,三个周期的数据,在cerebro 通过init中Indicator的初始化,在next中打印数据长度,数据和signal,执行结果:
在这里插入图片描述

3. 修改为不用args参数

在jupter中可以执行:

from __future__ import (absolute_import, division, print_function,unicode_literals)import backtrader as bt
import backtrader.feeds as btfeeds
import backtrader.indicators as btind
import backtrader.utils.flushfile%matplotlib inlineclass St(bt.Strategy):params = dict(multi=True)def __init__(self):self.pp = pp = btind.PivotPoint(self.data1)pp.plotinfo.plot = False  # deactivate plottingif self.p.multi:pp1 = pp()  # couple the entire indicatorsself.sellsignal = self.data0.close < pp1.s1else:self.sellsignal = self.data0.close < pp.s1()def next(self):txt = ','.join(['%04d' % len(self),'%04d' % len(self.data0),'%04d' % len(self.data1),self.data.datetime.date(0).isoformat(),'%.2f' % self.data0.close[0],'%.2f' % self.pp.s1[0],'%.2f' % self.sellsignal[0]])#print(txt)def runstrat(args_plot):#cerebro = bt.Cerebro()#data = btfeeds.BacktraderCSVData(dataname=args.data)cerebro = bt.Cerebro()stock_hfq_df = get_code('000858') start_date = datetime.datetime(2020, 1, 1)  # 回测开始时间end_date = datetime.datetime(2020, 12, 31)  # 回测结束时间data = bt.feeds.PandasData(dataname=stock_hfq_df, fromdate=start_date, todate=end_date)  # 加载数据# Add the Data Feed to Cerebrocerebro.adddata(data)cerebro.resampledata(data, timeframe=bt.TimeFrame.Weeks)cerebro.resampledata(data, timeframe=bt.TimeFrame.Months)#cerebro.addstrategy(St, multi=args.multi)cerebro.addstrategy(St, multi=True)cerebro.run(stdstats=False, runonce=False)if args_plot:cerebro.plot(iplot=False,style='bar')if __name__ == '__main__':args_plot = Truerunstrat(args_plot)

执行效果:
在这里插入图片描述

4.Indicator Reference

Indicator 参考说明,参数方法太多了,随用随学吧。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/413793.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

快慢指针-Floyd判圈算法

对于环形链表是否存在环的做法&#xff0c;普通算法可以通过额外Hash数组来存储链表元素&#xff0c;直到Hash数组中出现重复元素。时间复杂度O(n)&#xff0c;空间复杂度O(n) Floyd判圈算法通过利用快慢指针的移动来实现&#xff0c;时间复杂度O&#xff08;n&#xff09;&am…

54 C++ 多线程 条件变量 condition_variable,wait(),notify_one()

一 前提&#xff1a;之前代码的缺陷 在前面我们使用两个线程 &#xff0c;一个线程读&#xff0c;一个线程写来完成对于共享数据访问。 我们把这个代码 先放在这里&#xff0c;方便回忆&#xff0c;然后说明代码可能存在的问题&#xff0c;然后改动。 class Teacher174 { pri…

Educational Codeforces Round 161 (Rated for Div. 2)

Educational Codeforces Round 161 (Rated for Div. 2) Educational Codeforces Round 161 (Rated for Div. 2) A. Tricky Template 题意&#xff1a;开始没看懂。。。给出长度均为n的三个字符串abc&#xff0c;字符串s与模板t匹配的条件为&#xff1a;当模板位置字符为小写…

Spring Boot自动配置原理

1.SpringBootApplication注解 springboot是基于spring的新型的轻量级框架&#xff0c;最厉害的地方当属**自动配置。**那我们就可以根据启动流程和相关原理来看看&#xff0c;如何实现传奇的自动配置 SpringBootApplication//标注在某个类上&#xff0c;表示这个类是SpringBo…

域环境权限提升

Windows系统配置错误 在Windows系统中&#xff0c;攻击者通常会通过系统内核溢出漏来提权&#xff0c;但是如果碰到无法通过系统内核溢出漏洞法国提取所在服务器权限的情况&#xff0c;就会系统中的配置错误来提权。Windows系统中常见哦欸之错误包括管理员凭证配置错误&#x…

【重点!!!】【背包】【回溯】518.零钱兑换II

题目 跟39.组合总数、322.零钱兑换题目很类似。 法1&#xff1a;背包DP&#xff0c;最优解法 解释如下&#xff1a; 0 1 2 3 4 5(背包容量)1 0 0 0 0 0 没有硬币的时候&#xff09; 0 1 2 3 4 5(背包容量) 1 1 1 1 1 1 1 0 1 2 3 4 5(背包容量) 1 …

Leetcode刷题【每日n题】(3)

&#x1f3b5;今日诗词&#x1f3b5; 桃花潭水深千尺&#xff0c;不及汪伦送我情。 ——李白《赠汪伦》 目录 1.题目一 2.思路分析 3.代码实现 4.题目二 5.思路分析 6.代码实现 1.题目一 9. 回文数 给你一个整数 x &#xff0c;如果 x 是一个回文整数&#xff0c;返回 tr…

使用xbindkeys设置鼠标侧键

1.安装如下包 sudo apt install xbindkeys xautomation 2.生成配置文件 xbindkeys --defaults > $HOME/.xbindkeysrc 3.确定侧键键号 在终端执行下面的代码&#xff1a; xev | grep button 此时会出现如下窗口&#xff0c;将鼠标指针移动到这个窗口上&#xff1a; 单…

locust快速入门--使用分布式提高测试压力

背景&#xff1a; 使用默认的locust启动命令进行压测时&#xff0c;尽管已经将用户数设置大比较大&#xff08;400&#xff09;&#xff0c;但是压测的时候RPS一直在100左右。需要增加压测的压力。 问题原因&#xff1a; 如果你是通过命令行启动的或者参考之前文章的启动方式…

SSL证书自动化管理有什么好处?如何实现SSL证书自动化?

SSL证书是用于加密网站与用户之间传输数据的关键元素&#xff0c;在维护网络安全方面&#xff0c;管理SSL证书与部署SSL证书一样重要。定期更新、监测和更换SSL证书&#xff0c;可以确保网站的安全性和合规性。而自动化管理可以为此节省时间&#xff0c;并避免人为错误和不必要…

google网站流量怎么获取?

流量是一个综合性的指标&#xff0c;可以说做网站就是为了相关流量&#xff0c;一个网站流量都没有&#xff0c;那其实就跟摆饰品没什么区别 而想从谷歌这个搜索引擎里获取流量&#xff0c;一般都分为两种方式&#xff0c;一种是网站seo&#xff0c;另一种自然就是投广告&#…

OpenEL GS之深入解析视频图像处理中怎么实现错帧同步

一、什么是错帧同步? 现在移动设备的系统相机的最高帧率在 120 FPS 左右,当帧率低于 20 FPS 时,用户可以明显感觉到相机画面卡顿和延迟。我们在做相机预览和视频流处理时,对每帧图像处理时间过长(超过 30 ms)就很容易造成画面卡顿,这个场景就需要用到错帧同步方法去提升…