制作一个Python聊天机器人

我们学习一下如何使用 ChatterBot 库在 Python 中创建聊天机器人,该库实现了各种机器学习算法来生成响应对话,还是挺不错的

什么是聊天机器人

聊天机器人也称为聊天机器人、机器人、人工代理等,基本上是由人工智能驱动的软件程序,其目的是通过文本或语音与用户进行对话。 我们日常接触的比较著名的例子包括 Siri、Alexa 等

这些聊天机器人倾向于为用户执行特定任务,聊天机器人经常执行诸如进行交易、预订酒店、提交表格等任务。随着人工智能领域的技术进步,聊天机器人的可能性也是无穷无尽的

当然了,在当前技术下,聊天机器人还是有很多局限性的

  • 领域知识 —— 由于真正的人工智能仍然遥不可及,任何聊天机器人在与人类对话时都很难完全理解对话含义

  • 个性 —— 无法正确响应和相当差的理解能力比任何聊天机器人的常见错误更重要,为聊天机器人添加个性仍然是很遥远和困难的事情

我们可以将聊天机器人定义为两类

  • 基于特定规则 —— 在这种方法中,机器人是根据规则进行训练的。 基于此,机器人可以回答简单的查询,但有时无法回答复杂的对话

  • 自学 —— 这些机器人遵循机器学习方法,效率更高,并进一步分为另外两类

    • 基于检索模型 —— 在这种方法中,机器人根据用户输入从响应列表中检索最佳响应

    • 生成模型 —— 这些模型通常会给出答案,而不是从一组答案中进行搜索,这也使它们成为智能机器人

好了,高大上的聊天机器人知识就先介绍到这里,下面我们就通过 chatterbot 来构建一个简单的在线聊天机器人

ChatterBot 库简介

ChatterBot 是 Python 中的一个库,它生成对用户输入的响应,使用多种机器学习算法来产生各种响应。 用户可以更轻松地使用 ChatterBot 库制作具有更准确响应的聊天机器人

ChatterBot 的设计允许机器人接受多种语言的训练,最重要的是,机器学习算法使机器人更容易使用用户的输入自行改进

ChatterBot 可以轻松创建参与对话的软件,每次聊天机器人从用户那里获得输入时,它都会保存输入和响应,这有助于没有初始知识的聊天机器人使用收集到的响应进行自我进化

随着响应的增加,聊天机器人的准确性也会提高。 程序从与输入匹配的最接近匹配语句中选择最接近匹配的响应,然后从该响应的已知语句选择中选择响应

安装 ChatterBot 也非常简单

pip install chatterbot

下面我们就正式进入 Chatterbot 的世界吧

构建聊天机器人

机器人训练

Chatterbot 带有一个数据实用程序模块,可用于训练聊天机器人。 目前该模块中有十多种语言的训练数据,我们可以拿来直接使用

https://github.com/gunthercox/chatterbot-corpus

下面是在 python 中开始使用 ChatterBot 的简单示例

from chatterbot import chatbot
from chatterbot.trainers import ListTrainerchatbot = Chatbot('Edureka')
trainer = ListTrainer(chatbot)
trainer.train([ 'hi, can I help you find a course', 'sure I'd love to find you a course', 'your course have been selected'])response = chatbot.get_response("I want a course")
print(response)

在例子中,我们根据提供的输入从聊天机器人获得响应

构建 flask app

对于基本的 flask 结构,我们直接使用 GitHub 上的一个脚手架,这个是专门用来开发 ChatterBot 应用的

https://github.com/chamkank/flask-chatterbot

我们直接克隆项目就好

把项目下载到本地之后,我们进行一些修改

我们需要为 HTML 和 CSS 文件添加另外两个目录 static 和模板

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

修改 App.py 文件

from flask import Flask, render_template, request
from chatterbot import ChatBot
from chatterbot.trainers import ChatterBotCorpusTrainerapp = Flask(__name__)english_bot = ChatBot("Chatterbot", storage_adapter="chatterbot.storage.SQLStorageAdapter")
trainer = ChatterBotCorpusTrainer(english_bot)
trainer.train("chatterbot.corpus.english")@app.route("/")
def home():return render_template("index.html")@app.route("/get")
def get_bot_response():userText = request.args.get('msg')return str(english_bot.get_response(userText))if __name__ == "__main__":app.run()

index.html 文件

<!DOCTYPE html>
<html>
<head>
<link rel="stylesheet" type="text/css" href="/static/style.css">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.2.1/jquery.min.js"></script>
</head>
<body>
<h1>Flask Chatterbot Example</h1>
<div>
<div id="chatbox">
<p class="botText"><span>Hi! I'm Chatterbot.</span></p>
</div>
<div id="userInput">
<input id="textInput" type="text" name="msg" placeholder="Message">
<input id="buttonInput" type="submit" value="Send">
</div>
<script>
function getBotResponse() {
var rawText = $("#textInput").val();
var userHtml = '<p class="userText"><span>' + rawText + '</span></p>';
$("#textInput").val("");
$("#chatbox").append(userHtml);
document.getElementById('userInput').scrollIntoView({block: 'start', behavior: 'smooth'});
$.get("/get", { msg: rawText }).done(function(data) {
var botHtml = '<p class="botText"><span>' + data + '</span></p>';
$("#chatbox").append(botHtml);
document.getElementById('userInput').scrollIntoView({block: 'start', behavior: 'smooth'});
});
}
$("#textInput").keypress(function(e) {
if(e.which == 13) {
getBotResponse();
}
});
$("#buttonInput").click(function() {
getBotResponse();
})
</script>
</div>
</body>
</html>

index.html 文件将包含应用程序的模板,而 style.css 将包含带有 CSS 代码的样式表。 执行上述程序后,我们将得到如下图所示的输出

Style.css 文件

body
{
font-family: Garamond;
background-color: black;
}
h1
{
color: black;
margin-bottom: 0;
margin-top: 0;
text-align: center;
font-size: 40px;
}
h3
{
color: black;
font-size: 20px;
margin-top: 3px;
text-align: center;
}
#chatbox
{
background-color: black;
margin-left: auto;
margin-right: auto;
width: 40%;
margin-top: 60px;
}
#userInput {
margin-left: auto;
margin-right: auto;
width: 40%;
margin-top: 60px;
}
#textInput {
width: 87%;
border: none;
border-bottom: 3px solid #009688;
font-family: monospace;
font-size: 17px;
}
#buttonInput {
padding: 3px;
font-family: monospace;
font-size: 17px;
}
.userText {
color: white;
font-family: monospace;
font-size: 17px;
text-align: right;
line-height: 30px;
}
.userText span {
background-color: #009688;
padding: 10px;
border-radius: 2px;
}
.botText {
color: white;
font-family: monospace;
font-size: 17px;
text-align: left;
line-height: 30px;
}
.botText span {
background-color: #EF5350;
padding: 10px;
border-radius: 2px;
}
#tidbit {
position:absolute;
bottom:0;
right:0;
width: 300px;
}

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

接下来我们打开网页,就可以看到聊天页面啦

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

有一个文本框,我们可以在其中提供用户输入,机器人将为该语句生成相应的响应消息,当我们输入的消息越多,机器人就会越智能!

好了,今天的分享就到这里,我们下次见

如果觉得文章不错,记得点个赞哦

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/414631.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【算法】串联所有单词的子串【滑动窗口】

题目 给定一个字符串 s 和一个字符串数组 words。 words 中所有字符串 长度相同。s 中的 串联子串 是指一个包含 words 中所有字符串以任意顺序排列连接起来的子串。例如&#xff0c;如果 words ["ab","cd","ef"]&#xff0c; 那么 "abcd…

eNSP学习——配置通过Telnet登陆系统

实验内容&#xff1a; 模拟公司网络场景。R1是机房的设备&#xff0c;办公区与机房不在同一楼层&#xff0c;R2和R3模拟员工主机&#xff0c; 通过交换机S1与R1相连。 为了方便用户的管理&#xff0c;需要在R1上配置Telnet使员工可以在办公区远程管理机房设备。 为…

Apache Zeppelin结合Apache Airflow使用1

Apache Zeppelin结合Apache Airflow使用1 文章目录 Apache Zeppelin结合Apache Airflow使用1前言一、安装Airflow二、使用步骤1.目标2.编写DAG2.加载、执行DAG 总结 前言 之前学了Zeppelin的使用&#xff0c;今天开始结合Airflow串任务。 Apache Airflow和Apache Zeppelin是两…

【Linux修行路】基本指令

目录 推荐 前言 1、重新认识操作系统 1.1 操作系统是什么? 1.2操作系统的作用 1.3 我们在计算机上的所有操作 1.4 Linux操作的特点 2、Linux基本指令 2.1 ls 指令 2.2 pwd 命令 2.3 cd 指令 2.3.1 Linux中的目录结构 2.3.2 绝对路径和相对路径 2.3.3 cd 指令 …

通过manifest清单导入项目到gitlab中

文章目录 说明使用manifest得要求Manifest 格式演示示例 说明 从gitlab 11.2引入此功能。 GitLab 允许根据manifest清单文件&#xff08;如 Android 存储库使用的清单文件&#xff09;导入所需的 Git 存储库。 使用manifest得要求 GitLab 必须对其数据库使用 PostgreSQL。至少…

SpiderFlow爬虫平台漏洞利用分析(CVE-2024-0195)

1. 漏洞介绍 SpiderFlow爬虫平台项目中spider-flow-web\src\main\java\org\spiderflow\controller\FunctionController.java文件的FunctionService.saveFunction函数调用了saveFunction函数&#xff0c;该调用了自定义函数validScript&#xff0c;该函数中用户能够控制 functi…

vue 解决el-table 表体数据发生变化时,未重新渲染问题

效果图父组件中数量改变后总数重新计算 子组件完整代码 <template><el-tableshow-summaryref"multipleTable"v-bind"$props"selection-change"handleSelectionChange"row-click"handleRowClick":summary-method"getSum…

【问题记录】使用命令语句从kaggle中下载数据集

从Kaggle中下载Tusimple数据集 1.服务器环境中安装kaggle 使用命令&#xff1a;pip install kaggle 2.复制下载API 具体命令如下&#xff1a; kaggle datasets download -d manideep1108/tusimple3.配置kaggle.json文件 如果直接使用命令会报错&#xff1a; root:~# kagg…

微电网优化MATLAB:火鹰优化算法(Fire Hawk Optimizer,FHO)求解微电网优化(提供MATLAB代码)

一、火鹰优化算法FHO 火鹰优化算法&#xff08;Fire Hawk Optimizer&#xff0c;FHO&#xff09;由Mahdi Azizi等人于2022年提出&#xff0c;该算法性能高效&#xff0c;思路新颖。 单目标优化&#xff1a;火鹰优化算法&#xff08;Fire Hawk Optimizer&#xff0c;FHO&#…

Python数据分析案例36——基于神经网络的AQI多步预测(空气质量预测)

案例背景 不知道大家发现了没&#xff0c;现在的神经网络做时间序列的预测都是单步预测&#xff0c;即(需要使用X的t-n期到X的t-1期的数据去预测X的t期的数据)&#xff0c;这种预测只能预测一个点&#xff0c;我需要预测X的t1期的数据就没办法了&#xff0c;有的同学说可以把预…

vue3-表单输入绑定

表单输入绑定 获取表单输入的值方式&#xff1a; 手动连接值绑定和更改事件监听器 v-model 指令 &#xff08;常用&#xff09; <script lang"ts" setup> import { ref } from "vue" // 定义个变量接收输入的内容&#xff1a; const text ref(&…

制造业工厂为什么要实施MES系统呢?

MES是生产管理系统&#xff0c;生产管理是通过对生产系统的战略计划、组织、指挥、实施、协调、控制等活动&#xff0c;实现系统的物质变换、产品生产、价值提升的过程。在企业的价值链中&#xff0c;生产经营是企业核心能力的重要组成部分。 实施MES系统的原因 MES系统是中国比…