基于Harris角点的多视角图像全景拼接算法matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

4.1 Harris角点检测

4.2 图像配准

4.3 图像变换和拼接

4.4 全景图像优化

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

matlab2022a

3.部分核心程序

 
function [ImageB] = func_stitch(ImageA, ImageB)% 获取ImageA和ImageB的尺寸  RR1 = size(ImageA,1);CC1 = size(ImageA,2);RR2 = size(ImageB,1);CC2 = size(ImageB,2);%角点检测  jiaodian_imageB    = corner_detector(ImageB);%提取角点  [xh,yh,~]          = anms(jiaodian_imageB, 300);%对提取的角点计算特征描述子[Pcorner]          = feat_desc_geoblur(ImageB, xh, yh);%角点检测 jiaodian_imageA    = corner_detector(ImageA);%提取角点[xh2, yh2, ~]      = anms(jiaodian_imageA, 300);%对提取的角点计算特征描述子[Pcorner2]         = feat_desc_geoblur(ImageA, xh2, yh2);% 对两张图像的特征描述子进行匹配[Pmatch]           = feat_match(Pcorner2, Pcorner);% 提取匹配成功的点  X_mh1 = xh2(Pmatch ~= -1);Y_mh1 = yh2(Pmatch ~= -1);X_mh2 = xh(Pmatch(Pmatch ~= -1));Y_mh2 = yh(Pmatch(Pmatch ~= -1));% 剔除误匹配点 [H, ~] = ransac_est_homography(X_mh1, Y_mh1, X_mh2, Y_mh2, 10);% 计算两张图像到各自边界的距离  ImageA_dist = dist2border(ImageA);ImageB_dist = dist2border(ImageB);% 计算img_i四个角的映射坐标 ul = H*[1 1 1]'; ul = ul/ul(end);ur = H*[CC1, 1, 1]'; ur = ur/ur(end);bl = H*[1, RR1, 1]'; bl = bl/bl(end);br = H*[CC1, RR1, 1]'; br = br/br(end);% 根据映射坐标确定需要填充的边界  Edge_up    = 0;  Edge_L     = 0;Edge_dw    = 0;Edge_R     = 0;if max(br(1),ur(1)) > CC2Edge_R = round(max(br(1),ur(1))-CC2+30);ImageB = padarray(ImageB, [0, Edge_R], 'post');endif max(br(2), bl(2)) > RR2Edge_dw = round(max(br(2), bl(2))-RR2+30);ImageB = padarray(ImageB, [Edge_dw, 0], 'post');endif min(ul(1), bl(1)) <= 0 Edge_L = round(-min(ul(1), bl(1))+30);ImageB = padarray(ImageB, [0, Edge_L], 'pre');endif min(ul(2), ur(2)) <= 0Edge_up = round(-min(ul(2), ur(2)) + 30);ImageB = padarray(ImageB, [Edge_up, 0], 'pre');end% 计算单应性矩阵的逆H_inv = inv(H);% 创建一个网格,用于映射img_b上的每个像素到img_i上的坐标    [yh, xh] = meshgrid(round(Edge_up+min(ul(2), ur(2))):round(Edge_up+max(bl(2), br(2))), round(Edge_L+min(ul(1), bl(1))):round(Edge_L+max(br(1),ur(1))));yh = yh(:); xh = xh(:);xy  = H_inv*[xh - Edge_L, yh - Edge_up, ones(size(xh,1),1)]';xh2 = int64(xy(1,:)'./xy(3,:)'); yh2 = int64(xy(2,:)'./xy(3,:)');
................................................................................
end
0102

4.算法理论概述

        基于Harris角点的多视角图像全景拼接算法是一种在计算机视觉和图像处理领域中广泛应用的算法,用于将来自不同视角的多个图像拼接成一个全景图像。该算法主要依赖于特征点检测和图像配准技术,Harris角点检测是其中的关键步骤之一。

4.1 Harris角点检测

       Harris角点检测是一种基于图像局部自相关函数变化的角点检测方法。对于图像I(x,y),在每个像素点(x,y)处定义一个窗口,计算窗口内像素的灰度变化。Harris角点检测通过计算角点响应函数R来确定角点的位置:

        Ix​和Iy​分别是图像在x和y方向的梯度,w(x,y)是一个窗口函数,通常使用高斯函数。det(M)表示矩阵M的行列式,trace(M)表示矩阵M的迹,k是一个经验常数,通常取值为0.04~0.06。

        Harris角点检测通过计算每个像素点的角点响应函数R,并设置合适的阈值来筛选出角点。这些角点将作为后续图像配准和拼接的基础。

4.2 图像配准

        图像配准是将不同视角下的图像对齐的过程。在基于Harris角点的多视角图像全景拼接算法中,图像配准主要通过特征点匹配来实现。

       特征点提取:使用Harris角点检测算法从每个图像中提取出角点作为特征点。

       特征点描述:对每个特征点周围的图像区域进行描述,生成特征描述符。常用的特征描述符有SIFT、SURF等。

       特征点匹配:通过比较特征描述符之间的相似度,找到不同图像之间匹配的特征点对。常用的特征点匹配算法有暴力匹配、FLANN匹配等。

4.3 图像变换和拼接

        在找到匹配的特征点对后,需要通过图像变换将不同视角下的图像对齐到同一个坐标系下,然后进行拼接。

4.4 全景图像优化

拼接后的全景图像可能存在一些拼接缝和畸变,需要进行优化处理。

拼接缝消除:通过图像融合技术,将拼接缝附近的像素进行平滑过渡,消除拼接缝。

畸变校正:根据相机的畸变模型,对全景图像进行畸变校正,提高图像质量。

5.算法完整程序工程

OOOOO

OOO

O

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/415021.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何在C#中读取USB转串口参数并显示在ComboBox

如何在C#中读取USB转串口参数并显示在ComboBox 在很多应用程序中&#xff0c;尤其是那些需要与外部硬件通信的程序中&#xff0c;自动检测和读取串口参数是一个非常有用的功能。在本文中&#xff0c;我们将讨论如何在C#中实现这一功能&#xff0c;重点是如何自动识别通过USB转换…

MetaGPT-打卡-day2,MetaGPT框架组件学习

文章目录 Agent组件实现一个单动作的Agent实现一个多动作的Agent技术文档生成助手其他尝试 今天是第二天的打卡~昨天是关于一些概念的大杂烩&#xff0c;今天的话&#xff0c;就来到了Hello World环节。 从单个Agnet到多个Agent&#xff0c;再到组合更复杂的工作流来解决问题。…

ora-12154无法解析指定的连接标识符

用户反映查询的时候报错ora-12154 这个系统只做历史数据查询使用&#xff0c;使用并不平凡&#xff0c;该数据库曾做过一次服务器间的迁移。 用户描述&#xff0c;所有oracle客户端查询该视图都报tns错误&#xff0c;一般ora-12154会发生在连接数据库时&#xff0c;因为tns配…

Python爬虫时被封IP,该怎么解决?四大动态IP平台测评

在使用 Python 进行爬虫时&#xff0c;很有可能因为一些异常行为被封 IP&#xff0c;这主要是因为一些爬虫时产生的异常行为导致的。 在曾经的一次数据爬取的时候&#xff0c;我尝试去爬取Google地图上面的商家联系方式和地址信息做营销&#xff0c;可是很不幸&#xff0c;还只…

C语言之编译和链接

目录 一、引言 二、编译和链接 2.1 预处理&#xff08;预编译&#xff09; 2.2 编译 2.3 汇编 2.4 链接 一、引言 #include <stdio.h> int main() {printf("hello, world\n");return 0; } 像这样&#xff0c;只由ASCII字符构成的文件被称为文本文件&…

基于 Hologres+Flink 的曹操出行实时数仓建设

本文整理自曹操出行实时计算负责人林震基于 HologresFlink 的曹操出行实时数仓建设的分享&#xff0c;内容主要分为以下六部分&#xff1a; 曹操出行业务背景介绍曹操出行业务痛点分析HologresFlink 构建企业级实时数仓曹操出行实时数仓实践曹操出行业务成果分析未来展望 一、曹…

vue3中新增时form对象无法赋值问题

有时候对象的值死活赋不上值&#xff0c;这时候可以看下赋值的对象变量名是否和页面组件中的ref相同&#xff0c; 更改后正常赋值

【spark】SparkSQL

目录 SparkSQL01.快速入门什么是SparkSQL为什么学习SparkSQLSparkSQL的特点SparkSQL发展历史-前身Shark框架SparkSQL发展历史 02.SparkSQL概述SparkSQL和Hive的异同SparkSQL的数据抽象DataFrame概述SparkSession对象 03.DataFrame入门和操作DataFrame的组成DataFrame的代码构建…

探索FTP:原理、实践与安全优化

引言 在正式开始讲解之前&#xff0c;首先来了解一下文件存储的类型有哪些。 DAS、SAN和NAS是三种不同的存储架构&#xff0c;分别用于解决不同场景下的数据存储需求。 DAS (Direct Attached Storage 直接附加存储)&#xff1a;DAS 是指将存储设备&#xff08;如硬盘&#x…

Python Django编写接口并用Jmeter测试的方法

一、环境准备 python3.6.7Pycharm 二、创建项目 我这里是在Django项目中新建了个APP&#xff0c;目录结构如下图所示&#xff1a; 那么怎么在已有的Django项目中新建APP并进行配置呢&#xff1a; 2.1、新建app a、可以在终端输入命令&#xff1a;python manage.py startap…

解密OceanBase数据库引擎:探秘数据的深海奥秘

目录 1、引言 1.1 数据库引擎的重要性 1.2 OceanBase数据库引擎的背景和意义 2、OceanBase数据库引擎的基本概述 2.1 数据库引擎的定义和功能 2.2 OceanBase数据库引擎的特点和优势 3、OceanBase数据库引擎的架构和设计 3.1 分布式架构的概念和原理 3.2 OceanBase数据…

某马头条——day05

文章定时发布 实现方案对比 实现方案 延迟队列服务实现 按照文档进行项目的导入并准备数据库表导入对应实体类和nacos配置中心 乐观锁集成 redis集成和测试 成功集成通过测试 添加任务 ①&#xff1a;拷贝mybatis-plus生成的文件&#xff0c;mapper ②&#xff1a;创建task类…