VC++中使用OpenCV对原图像中的四边形区域做透视变换

VC++中使用OpenCV对原图像中的四边形区域做透视变换

最近闲着跟着油管博主murtazahassan,学习了一下LEARN OPENCV C++ in 4 HOURS | Including 3x Projects | Computer Vision,对应的Github源代码地址为:Learn-OpenCV-cpp-in-4-Hours

视频里面讲到到原图中的扑克牌四个顶点标记画圆,并且将扑克牌K做透视变换后摆正重新显示,资源图像文件cards.png下载地址为:https://github.com/murtazahassan/Learn-OpenCV-cpp-in-4-Hours/tree/main/Resources
cards.png
cards.png

什么是透视变换

从名称中可以清楚地看出,透视变换与视点的变化相关。这种类型的转换不保留平行度、长度和角度。但它们确实保留了共线性和关联性。这意味着即使在变换之后直线仍将保持直线。

一般来说,透视变换可以表示为:
透视变换的数学形式
上面是透视变换的数学形式,说白了就是对图像中的某个区域做处理。
这里,(x’,y’)是变换点,而(x,y)是输入点。变换矩阵 (M) 可以看作是以下的组合:
透视变换点
对于仿射变换,投影向量等于0。因此,仿射变换可以被认为是透视变换的特例。

由于变换矩阵(M)由8个常数(自由度)定义,因此为了找到这个矩阵,我们首先在输入图像中选择4个点,然后根据用途将这4个点映射到未知输出图像中的所需位置-case(这样我们将有 8 个方程和 8 个未知数,并且可以很容易地求解)。

一旦计算出变换矩阵,我们就将透视变换应用于整个输入图像以获得最终的变换图像。让我们看看如何使用 OpenCV 来做到这一点。
对图形做透视变换

对扑克牌K做透视变换

OpenCV中的透视变换相关函数getPerspectiveTransformwarpPerspective

透视变换(Perspective Transformation)是将成像投影到一个新的视平面(Viewing Plane),也称作投影映射(Projective Mapping)。如图1,通过透视变换ABC变换到A’B’C’。透视变换是计算图像学和线性代数中的一个常用概念。
在视角转换中,我们可以改变给定图像或视频的视角,以便更好地洞察所需信息。在透视变换中,我们需要提供图像上想要通过改变透视来收集信息的点。我们还需要提供要在其中显示图像的点。然后,我们从给定的两组点获得透视变换并将其与原始图像包裹起来。

我们使用 getPerspectiveTransform, 然后使用 warpPerspective 函数,其中 getPerspectiveTransform它将 4 对对应点作为输入并输出变换矩阵,计算出变换矩阵 (M) 后,将其传递给 warpPerspective() 函数,该函数将透视变换应用于图像。

getPerspectiveTransform的函数有两种重载形式,其中一个函数原型如下:
getPerspectiveTransform函数原型1
getPerspectiveTransform重载函数原型2为:
getPerspectiveTransform函数原型2
warpPerspective 函数原型为:
warpPerspective函数原型

首先使用Windows电脑自带默认的画图工具打开cards.png原图,通过移动鼠标到扑克牌K的左上、右上、左下、右下角,在左下角即可查看图像某点的像素坐标,如下图所示:

卡片K的左上角坐标
可以看到K的左上角坐标为:{529, 144}
用同样的方法,依次获取K的右上、左下、右下角坐标,分别为:{771,190}、{405,395}、{674,457}

实现代码

1、根据原图,以及卡片K的位置,获取对应的透视变换矩阵
2、 对原图中的卡片K根据透视变化矩阵进行转换,得到目标图像imgWarp
3、在原图K的四个顶点位置处画一个圆,半径为10像素,颜色为红色
4、显示原图和目标图像K
我们要将扑克牌K进行透视变换摆正,类似下图的转换,以获得图像的自上而下的“鸟瞰图”。:
将某个四边形摆正,做透视变换

实现代码如下:

#include <opencv2/imgcodecs.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
#include <iostream>using namespace cv;
using namespace std;///  Warp Images  //int main()
{string path = "Resources/cards.jpg";Mat img = imread(path);	// 读取原图Mat matrix, imgWarp;float w = 250, h = 350;	// 目标图像的宽度和高度Point2f src[4] = { {529,144},{771,190},{405,395},{674,457} };	// 扑克牌K的四个顶点坐标,分别为左上、右上、左下、右下角坐标Point2f dst[4] = { {0.0f,0.0f},{w,0.0f},{0.0f,h},{w,h} };		// 目标输出图像imgWarp的四个顶点坐标matrix = getPerspectiveTransform(src, dst);	// 根据原图和目标图,获取对应透视变换的转换矩阵warpPerspective(img, imgWarp, matrix, Point(w, h));	// 对原图中的卡片K根据透视变化矩阵进行转换,得到目标图像imgWarp// 在原图K的四个顶点位置处画一个圆,半径为10像素,颜色为红色for (int i = 0; i < 4; i++){circle(img, src[i], 10, Scalar(0, 0, 255), FILLED);}imshow("Image", img);			// 显示原图imshow("Image Warp", imgWarp);	// 显示目标图像KwaitKey(0); // 永久等待直到用户按下键盘中的键,则退出程序return 0;
}

运行结果

在VS2017中运行结果如下图所示:
显示卡片K

对原图中的扑克片K、J、9、Q依次做透视变化并输出

接下来,我们参照上面扑克牌K的处理方法,可以依次对原图中的扑克牌J、9、Q做类似的处理,代码如下图所示:

#include <opencv2/imgcodecs.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
#include <iostream>using namespace cv;
using namespace std;///  Warp Images  //int main()
{string path = "Resources/cards.jpg";Mat img = imread(path);Mat matrix, imgWarpK;Mat matrixJ, imgWarpJ;Mat matrix9, imgWarp9;Mat matrixQ, imgWarpQ;float w = 250, h = 350;	// 目标卡片显示的宽度和高度// 1.处理卡片K// 分别对应扑克牌K的左上、右上、左下、右下角的坐标Point2f src[4] = { {529,144},{771,190},{405,395},{674,457} };	// 源图像中K卡片对应的四边形顶点的坐标。Point2f dst[4] = { {0.0f,0.0f},{w,0.0f},{0.0f,h},{w,h} };		// 目标图像中K卡片对应的四边形顶点的坐标。// 获取透视变换矩阵matrix = getPerspectiveTransform(src, dst);warpPerspective(img, imgWarpK, matrix, Point(w, h));// 在原图K的四个顶点处画圆for (int i = 0; i < 4; i++){circle(img, src[i], 10, Scalar(0, 0, 255), FILLED);}// 2.处理卡片J// 分别对应扑克牌J的左上、右上、左下、右下角的坐标Point2f srcOfJCard[4] = { {776, 108}, {1018, 85}, {849, 358}, {1116, 331} };Point2f destOfJCard[4] = { {0.0f, 0.0f}, {w, 0.0f}, {0.0f, h}, {w, h} };// 获取卡片J的透视变化矩阵matrixJ = getPerspectiveTransform(srcOfJCard, destOfJCard);warpPerspective(img, imgWarpJ, matrixJ, Point(w, h));// 在原图J的四个顶点画圆for (int i = 0; i < 4; i++) {circle(img, srcOfJCard[i], 10, Scalar(255, 0, 0), FILLED);}// 3.处理卡片9// 分别对应扑克牌9的左上、右上、左下、右下角的坐标Point2f srcOf9Card[4] = { {743, 383}, {1023, 438}, {646, 710}, {962, 781} };Point2f destOf9Card[4] = { {0.0f, 0.0f}, {w, 0.0f}, {0.0f, h}, {w, h} };// 获取卡片9的透视变化矩阵matrix9 = getPerspectiveTransform(srcOf9Card, destOf9Card);warpPerspective(img, imgWarp9, matrix9, Point(w, h));// 在原图9的四个顶点画圆for (int i = 0; i < 4; i++) {circle(img, srcOf9Card[i], 10, Scalar(0, 255, 0), FILLED);}// 4.处理卡片Q// 分别对应扑克牌Q的左上、右上、左下、右下角的坐标Point2f srcOfQCard[4] = { {64, 326}, {339, 279}, {91, 636}, {401, 573} };Point2f destOfQCard[4] = { {0.0f, 0.0f}, {w, 0.0f}, {0.0f, h}, {w, h} };// 获取卡片Q的透视变化矩阵matrixQ = getPerspectiveTransform(srcOfQCard, destOfQCard);warpPerspective(img, imgWarpQ, matrixQ, Point(w, h));// 在原图Q的四个顶点画圆for (int i = 0; i < 4; i++) {circle(img, srcOfQCard[i], 10, Scalar(0, 255, 0), FILLED);}imshow("Image", img);			// 显示原图imshow("Warp K", imgWarpK);		// 显示经透视变化后的卡片K,宽度为250,高度为350imshow("Warp J", imgWarpJ);		// 显示经透视变化后的卡片J,宽度为250,高度为350imshow("Warp 9", imgWarp9);		// 显示经透视变化后的卡片9,宽度为250,高度为350imshow("Warp Q", imgWarpQ);     // 显示经透视变化后的卡片Q,宽度为250,高度为350waitKey(0);	// 无限期的等待键盘输入return 0;
}

对应的运行结果如下图所示:
对4个卡片做透视变换

参考资料

  • Perspective Transformation – Python OpenCV
  • TAG ARCHIVES: CV2.GETPERSPECTIVETRANSFORM()
  • LEARN OPENCV C++ in 4 HOURS | Including 3x Projects | Computer Vision
  • murtazahassan/Learn-OpenCV-cpp-in-4-Hours
  • OpenCV官网
  • OpenCV-Get Started
  • OpenCV Github仓库源代码
  • OpenCV tutorial
  • Warp Images
  • https://docs.opencv.org/4.x/da/d54/group__imgproc__transform.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/416782.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

企业级大数据安全架构(四)Ranger安装

作者&#xff1a;楼高 Ranger是支持审计功能的&#xff0c;安装时可以选择审计数据保存的位置&#xff0c;默认支持Solr和HDFS。HDFS的配置比较简单&#xff0c;这里就不赘述了&#xff0c;我们这里使用Ambari默认自带的Solr保存审计日志&#xff0c;下面部署Solr&#xff1a; …

【想要安利给所有人的开发工具】一款写笔记的工具——语雀

目录 &#x1f4d5;开篇 ✍使用感受 &#x1f44d;语雀的常用功能 1、导出成图片 2、导出为PDF 3、代码的模块 4、流程图 ​5、画板类 6、程序员专用区 ​7、布局和样式 8、菜单栏的功能 9、其余功能&#xff08;很多&#xff09; &#x1f697;为什么推荐语雀 &…

鸿蒙开发系列教程(四)--ArkTS语言:基础知识

1、ArkTS语言介绍 ArkTS是HarmonyOS应用开发语言。它在保持TypeScript&#xff08;简称TS&#xff09;基本语法风格的基础上&#xff0c;对TS的动态类型特性施加更严格的约束&#xff0c;引入静态类型。同时&#xff0c;提供了声明式UI、状态管理等相应的能力&#xff0c;让开…

MySQL基础笔记(8)多表查询

一.多表关系介绍 项目开发中&#xff0c;在进行数据库表结构设计时&#xff0c;会根据业务需求及业务模块之间的关系&#xff0c;分析并设计表结构&#xff0c;由于业务之间相互关联&#xff0c;所以各个表结构之间也会存在着各种联系&#xff0c;分为如下3类&#xff1a; 一对…

node.js笔记

再看一遍node.js吧 Node.js REPL&#xff08;交互解释器&#xff09;Node.js 回调函数node.js事件循环Node.js EventEmitterNode.js Buffer(缓冲区)&#xff08;二进制操作&#xff09;Node.js Stream(流) &#xff08;文件操作读取写入文件&#xff09;Node.js 模块系统Node.j…

C++ BuilderXE关于FDQuery组件记录限制设定

这样修改就可以查询返回所有记录。 TFDQuery.RecordCount,或TDateSet.RecordCount只显示了可见的50条数据&#xff0c;但实际上数据的总量超过了这个数量。为了解决这个问题&#xff0c;我们可以通过更改TFDConection.FetchOptions.RecordCountMode属性为fmTotal&#xff0c;以…

展锐T618_虎贲T618紫光展锐安卓核心板规格参数

基于紫光展锐八核T618平台的纯国产化方案&#xff0c;采用了开放的智能Android操作系统&#xff0c;并集成了4G网络、2.5G5G双频WIFI(可支持1*1 MIMO)、BLUETOOTH近距离无线传输技术以及GNSS无线定位技术。用户可以根据特定场合的需求&#xff0c;选择合适的嵌入式ARM核心模块&…

使用 Node 创建 Web 服务器

Node.js 提供了 http 模块&#xff0c;http 模块主要用于搭建 HTTP 服务端和客户端&#xff0c;使用 HTTP 服务器或客户端功能必须调用 http 模块&#xff0c;代码如下&#xff1a; var http require(http); 以下是演示一个最基本的 HTTP 服务器架构(使用 8080 端口)&#x…

【Spring Boot 3】【Redis】基本数据类型操作

【Spring Boot 3】【Redis】基本数据类型操作 背景介绍开发环境开发步骤及源码工程目录结构 背景 软件开发是一门实践性科学&#xff0c;对大多数人来说&#xff0c;学习一种新技术不是一开始就去深究其原理&#xff0c;而是先从做出一个可工作的DEMO入手。但在我个人学习和工…

Ubuntu 22.04安装使用easyconnect

EasyConnect 百度百科&#xff0c;EasyConnect能够帮助您在办公室之外使用公司内网的所有系统及应用。在您的公司部署深信服远程应用发布解决方案后&#xff0c;您的公司所有业务系统及应用都可以轻松迁移至移动互联网上。您可以通过手机、PAD等智能移动终端随时随地开展您的业…

运筹说 第56期 | 整数规划的数学模型割平面法

前几章讨论过的线性规划问题的一个共同特点是&#xff1a;最优解的取值可以是分数或者小数。然而&#xff0c;在许多实际问题中&#xff0c;决策者要求最优解必须是整数&#xff0c;例如公交车的车辆数、员工的人数、机器的台数、产品的件数等。那么&#xff0c;我们能否将得到…

java使用AES加密数据库解密

目录 前言代码加密&#xff08;AES&#xff09;sql解密 前言 在一些项目中&#xff0c;客户要求一方面把一些敏感信息进行加密存储到数据库中&#xff0c;另一方面又需要通过加密的信息进行查询&#xff0c;这时就需要在sql对加密的字段进行解密后再进行查询。 代码加密&#x…