【论文阅读】ControlNet、文章作者 github 上的 discussions

文章目录

  • Introduction
  • Method
    • ControlNet
    • ControlNet for Text-to-Image Diffusion
    • Training
    • Inference
  • Experiments
    • 消融实验
    • 定量分析
  • 在作者 github 上的一些讨论
    • 消融实验更进一步的探索
    • Precomputed ControlNet 加快模型推理
    • 迁移控制能力到其他 SD1.X 模型上
    • 其他

Introduction

  1. 提出ControlNet,通过引入该结构微调预训练文生图扩散模型,可以给模型增加空间定位条件.
  2. Stable Diffusion上使用ControlNet微调,使模型能接受 Canny edges, Hough lines, user scribbles, human key points, segmentation maps, shape normals, depths, cartoon line drawings 图像作为输入条件.
  3. 消融实验、定量分析、对比 baseline.



Method

ControlNet

考虑一个预训练好的神经网络 F ( ⋅ ; Θ ) \mathcal{F}(·;\Theta) F(⋅;Θ)表示训练好的神经网络块,它的内部结构可以包括 resnet, conv-bn-relu, muti-head att, transfomer 等. 输入 x ∈ R h × w × c x\in\mathbb{R}^{h\times w\times c} xRh×w×c,将其转换到 y y y,也即

y = F ( x ; Θ ) \large y=\mathcal{F}(x;\Theta) y=F(x;Θ)

使用ControlNet微调神经网络 F ( ⋅ ; Θ ) \mathcal{F}(·;\Theta) F(⋅;Θ),首先复制 F ( ⋅ ; Θ ) \mathcal{F}(·;\Theta) F(⋅;Θ)的结构和参数,参数命名为 Θ c \Theta_{c} Θc,同时冻结 Θ \Theta Θ. 然后在复制结构的前和后分别引入zero convolution,也即核大小为 1 × 1 1\times1 1×1、初始参数为 0 0 0的卷积层,分别用 Z ( ⋅ ; Θ z 1 ) \mathcal{Z}(·;\Theta_{z1}) Z(⋅;Θz1) Z ( ⋅ ; Θ z 2 ) \mathcal{Z}(·;\Theta_{z2}) Z(⋅;Θz2)表示. 最后,将 c c c作为微调时的条件,将其整合到模型的前向计算中,具体表示为

y c = F ( x ; Θ ) + Z ( F ( x + Z ( c ; Θ z 1 ) ; Θ c ) ; Θ z 2 ) \large y_c=\mathcal{F}(x;\Theta)+\mathcal{Z}(\mathcal{F}(x+\mathcal{Z}(c;\Theta_{z1});\Theta_c);\Theta_{z2}) yc=F(x;Θ)+Z(F(x+Z(c;Θz1);Θc);Θz2)

模型结构如下所示:
暂时无法在飞书文档外展示此内容

在训练的第一步中,zero convolution的参数都为 0 0 0,因此模型输出和未加入ControlNet的输出一样,这样做有助于在刚开始训练时保护微调结构的 backbone,使其免受随机噪声的污染.


ControlNet for Text-to-Image Diffusion

众所周知,Stable Diffusion训练时的网络有这么几个部分构成:

  • FrozenCLIPEmbedder是一个预训练的 text encoder,将 prompt 嵌入成条件向量,一般情况下参数冻结.
  • AutoencoderKL是一个预训练的 image encoder,将图像从像素空间转换到隐空间,降低扩散过程中图像向量的尺寸,一般情况下参数冻结.
  • UNet,主要需要训练的部分,模拟隐空间上图像在数据分布和高斯分布之间转换的过程. 结构上主要包含:
    • 若干 encoder 块,主要由 resnet, transformer, avg_pool 组成,用于逐层提取特征.
      • resnet 块融合图像隐向量和扩散时间步的嵌入向量
      • transformer 块融合图像隐向量和 prompt 条件向量
    • 一个 middle 块,由 resnet 和 transformer 组成
    • 若干 decoder 块,主要由 resnet, transformer, interpolate 组成,用于融合深层特征和浅层特征.

ControlNet应用于Stable Diffusion做微调,也即应用于其中UNet的 decoder 部分,使这部分网络能进一步融合作为条件的图像。用 t t t表示时间步, c t c_t ct表示 prompt 条件, c f c_f cf表示条件图像在隐空间上的表示,修改后的UNet结构为

在这里插入图片描述


Training

z 0 z_0 z0表示原始图像的隐向量,经过时间步 t t t后加噪的图像表示为 z t z_t zt,应用了ControlNet的UNet表示为 ϵ θ \epsilon_{\theta} ϵθ,训练时的损失函数可以表示为

L = E z 0 , t , c t , c f , ϵ ∈ N ( 0 , I ) [ ∣ ∣ ϵ − ϵ θ ( z t , t , c t , c f ) ∣ ∣ 2 2 ] \large \mathcal{L}=\mathbb{E}_{ z_0,t,c_t,c_f,\epsilon\in\mathcal{N}(0,I)}\left[||\epsilon-\epsilon_{\theta}(z_t,t,c_t,c_f)||_2^2\right] L=Ez0,t,ct,cf,ϵN(0,I)[∣∣ϵϵθ(zt,t,ct,cf)22]

在实际训练过程中,作者随机将 50 % 50\% 50%的 prompt 置为空字符串,这种做法能使ControlNet学习到图像条件的语义信息. 由于zero convolution不会引入额外的噪声,因此在训练过程中整个Stable Diffusion模型仍然能生成高质量的图片. 基于这一特性,作者观察到,微调时模型并非逐渐学习到图像条件,而是在训练步数低于 10 K 10\mathrm{K} 10K时的某一步开始突然遵从图像条件. 作者称这其为 “sudden convergence phenomenon”
[图片]



Inference

Stable Diffusion使用CFG控制条件强弱,令 ϵ u c \epsilon_{uc} ϵuc表示无 prompt 条件的模型输出, ϵ c \epsilon_{c} ϵc表示有 prompt 条件的模型输出,超参数 β c f g \beta_{cfg} βcfg表示 prompt 条件的强弱,模型最终的输出 ϵ p r d \epsilon_{prd} ϵprd可以表示为

ϵ p r d = ϵ u c + β c f g ( ϵ c − ϵ u c ) \large \epsilon_{\mathrm{prd}}=\epsilon_{\mathrm{uc}}+\beta_{\mathrm{cfg}}(\epsilon_{\mathrm{c}}-\epsilon_{\mathrm{uc}}) ϵprd=ϵuc+βcfg(ϵcϵuc)

在没有 prompt 条件的极端情况下,如果抽取完深层特征的图像条件同时加到 ϵ u c \epsilon_{uc} ϵuc ϵ c \epsilon_{c} ϵc上,这会使CFG完全失去控制条件强弱的作用;如果只加到 ϵ c \epsilon_{c} ϵc上,又会使控制条件对输出图像的影响过大. 因此,作者提出一种叫做Classifier-free guidance resolution weighting(CFG-RW)的方法. 具体做法,把图像条件加到 ϵ c \epsilon_{c} ϵc上,在ControlNet每一层输出加回UNet前乘系数 w i w_i wi( = 64 / h i =64/h_i =64/hi h i h_i hi为第 i i i个 decoder 块的尺寸). 下图分别展示了该讨论各种情况下的输出图像:
[图片]

有了上述方法之后,结合不同类别的图像条件,也只需要对应相加即可.


Experiments

消融实验

探索ControlNet其他可能结构

  • zero convolution换成随机初始化的卷积层
  • 只使用一个卷积层作为ControlNet
    [图片]



定量分析

作者使用 ADE20K 作为测试集,在 OneFormer 上做语义分割,对比不同方法重构图像和原图像的 IoU .
[图片]

之后,作者评估了不同模型的 FID、CLIP score、CLIP aesthetic score.

[图片]

下图展示了不同模型实际生成的图片
[图片]




在作者 github 上的一些讨论

消融实验更进一步的探索

discussion 链接
ControlNet简化为ControlNet-liteControlNet-mlp两种模型:
[图片]

作者从根据一张房子的图片做了简单地涂鸦风格处理,作为控制条件

在精心设计 prompt 的情况下,发现原版模型和改后的两种模型输出的图像效果都不错.

Professional high-quality wide-angle digital art of a house designed by frank lloyd wright. A delightful winter scene. photorealistic, epic fantasy, dramatic lighting, cinematic, extremely high detail, cinematic lighting, trending on artstation, cgsociety, realistic rendering of Unreal Engine 5, 8k, 4k, HQ, wallpaper

(分别为`ControlNet`、`ControlNet-lite`、`ControlNet-mlp`的输出)

但是当 prompt 为空时,两种改版都很拉胯.

(分别为`ControlNet`、`ControlNet-lite`、`ControlNet-mlp`的输出)

一方面,这样的对比说明更深的 encoder 结构确实拥有更强的识别能力,所以如果你的目标是训练稳健的ControlNet投入到生产环境,这样的识别能力是很重要的. 反之,如果用来做解决特定问题的研究或者训练集足够简单,那可以考虑轻量化的方案.
另一方面,这也解释了ControlNet接受 prompt 条件和时间步输入是重要的,因为这么做可以让使用者仍然能靠 prompt 条件调整模型的输出.



Precomputed ControlNet 加快模型推理

discussion 链接
主要 idea 如下图所示:
[图片]

这样做可以提前计算好ControlNet中每个块的输出,在推理时直接加到原模型的UNet上.
作者观察到这样训练的模型生成的图像更假,并且更不稳健,以失败告终.
评论中有人提到可以尝试使用 NAS (neural architecture search) 探索更好的模型结构,以降低 GPU 消耗.



迁移控制能力到其他 SD1.X 模型上

discussion 链接
作者尝试将在 Stable Diffusion 1.5上训练的ControlNet迁移到AnythingV3上,作者给出的方法是:

AnythingV3_control_openpose = AnythingV3 + SD15_control_openpose – SD15

限制有两点:

  • text encoder 不同会导致意外结果
  • 在例如 human pose 的应用中,输入最好不是二刺螈人物图片,因为检测姿势用的 OpenPose 不擅长处理二刺螈人物.

这种方法已经过时了. 目前在实际应用中,直接把ControlNet插到其他 SD1.X 模型上就行.



其他

  • Riffusion + ControlNet 音乐修复
  • 将原图转换成像素风格
  • 人物换衣
  • 调色

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/417318.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AWTK 开源串口屏开发(7) - 屏幕保护

现代屏幕其实并不需要屏幕保护,不过屏幕保护程序会衍生一些其它用途。比如: 保护隐私。长时间不操作,通过动画或者其它方式隐藏屏幕内容。数据安全。长时间不操作,需要输入密码才能恢复。美观/广告。长时间不操作,显示…

揭秘!微信高效群发的方法,轻松提升转化率

微信作为一个维护客户关系和营销推广产品与服务的重要平台,对于企业和个人来说都具有非常大的价值。然而,如何高效地给客户群发消息,提高转化率,却是一个让很多人头疼的问题。 下面就给大家介绍几个小技巧,帮助大家实…

tidb Cloud 连接spring boot 项目

一、 免费试用tidbitcloud TiDB Cloud Documentation | PingCAP Docs 1.github账号登录 2.创建集群 3.点击对应集群cludter0 导入数据 导入 本地导入只支持csv文件,其他导入需要AWZ账号使用S3云存储 二、连接spingboot项目 选择java,复制下面的jd…

智汇云舟创始人兼总裁周舟:视频孪生赋能智慧城市多元场景建设

1月18日,由知名科技媒体和产业智库泰伯网主办的WIF2023创新先行者论坛暨企业家会员年会于北京成功举办。共有百余位科技公司创始人、管理者、投资人齐聚,研判产业经济趋势,寻找新形势下企业未来发展的新方向、新机会。智汇云舟创始人兼总裁周…

什么是小红书报备达人,报备流程总结!

随着KOL的崛起,品牌方投放达人是司空见惯的事情。所以,关于品牌投放小红书达人时,一定要知道什么是报备。今天来马文化传媒和大家分享下什么是小红书报备达人,报备流程总结! 一、什么是小红书报备 小红书报备即是&…

美团跌破发行价,市值较巅峰蒸发80%!

大家好,我是程序员小灰。 说起美团的股票,不禁让我回想起一段往事。2019年初,当时我所在的公司摩拜科技被美团收购,因为自己有一些摩拜的期权,被收购后转换成了美团期权。 小灰很快做了行权,拿到了美团的股…

多场景建模:阿里STAR

多场景建模:阿里STAR 阿里提出了Partitioned Normalization、Star Topology FCN、Auxiliary Network应用到多场景建模,在各个场景上面取得不错的效果。 两个场景: 淘宝主页的banner,展示一个商品或者一个店铺或者一个品牌猜你喜欢…

FineBI报表页面大屏小屏自适应显示问题

大屏正常显示 显示正常 小屏BI自适应显示 存在遮挡字体情况 小屏浏览器缩放显示 等比缩放后显示正常 其他建议(部分解决方法) 初步有两种解决方法 两种方法都需要FineBI中网页框可以嵌套发布FineReport制作的报表xx.cpt/xx.frm 方法一:使用f…

【论文阅读 SIGMOD18】Query-based Workload Forecasting for Self-Driving

Query-based Workload Forecasting for Self-Driving Database Management Systems My Summary ABSTRACT Autonomous DBMS的第一步就是能够建模并预测工作负载,以前的预测技术对查询的资源利用率进行建模。然而,当数据库的物理设计和硬件资源发生变化…

Redis持久化和集群架构

目录 Redis持久化 RDB快照(snapshot) RDB优点 RDB缺点 RDB的触发机制 AOF持久化 AOF文件重写 AOF触发机制 混合模式 Redis主从架构 Redis哨兵高可用架构 Redis Cluster架构 槽位定位算法 跳转重定位 Redis集群节点间的通信机制 Redis持久化…

2024最新租号平台系统源码,支持单独租用或合租使用

应用介绍 这是一款租号平台源码,采用常见的租号模式。目前网络上还很少见到此类类型的源码。 平台的主要功能如下: 支持单独租用或采用合租模式,采用易支付通用接口进行支付,添加邀请返利功能,以便站长更好地推广&am…

c语言空指针

系列文章目录 c语言空指针 c语言空指针 系列文章目录c语言空指针 c语言空指针 空指针 没有指向任何的地址(其指向0的地址) 空制指针就是指向内存编号为零的空间,操作该内存空间会报错,一般情况空指针用于程序条件判断 操作空指针 …