3、非数值型的分类变量

非数值型的分类变量

有很多非数字的数据,这里介绍如何使用它来进行机器学习。

在本教程中,您将了解什么是分类变量,以及处理此类数据的三种方法。

本课程所需数据集夸克网盘下载链接:https://pan.quark.cn/s/9b4e9a1246b2
提取码:uDzP

文章目录

  • 1、简介
  • 2、三种方法的使用
      • 1) 删除分类变量
      • 2) 有序编码
      • 3) One-Hot 编码
  • 3、举例
      • 3.1定义函数来度量每种方法的质量
      • 3.2三种方法的MAE得分
        • 方法1的得分(放弃分类变量)
        • 方法2的得分(顺序编码)
        • 方法2的得分 (One-Hot 编码)
  • 4、哪种方法最好?
  • 5、总结

1、简介

一个分类变量只接受有限数量的值。

  • 考虑一个调查,询问你多久吃一次早餐,并提供四个选项:“从不”,“很少”,“大多数天”或“每天”。在这种情况下,数据是分类的,因为响应属于一组固定的类别。
  • 如果人们回答了一份关于他们拥有哪个品牌汽车的调查,响应将属于类别,如“本田”,“丰田”和“福特”。在这种情况下,数据也是分类的。

如果你尝试在没有预处理的情况下将这些变量输入大多数Python机器学习模型中,你将会收到错误。在本教程中,我们将比较三种用于准备分类数据的方法。

2、三种方法的使用

1) 删除分类变量

处理分类变量最简单的方法是从数据集中删除它们。这种方法只有在列中不包含有用信息的情况下才能很好地工作。

2) 有序编码

Ordinal encoding 标签编码将每个惟一值分配给不同的整数。
在这里插入图片描述

这种方法假设类别的顺序为:“Never”(0)<“rare”(1)<“Most days”(2)<“Every day”(3)。

在本例中,这个假设是有意义的,因为对类别有一个无可争议的排名。并不是所有的分类变量在值中都有一个明确的顺序,但是我们将那些有顺序的变量称为有序变量。对于基于树的模型(如决策树和随机森林),可以期望标签编码能够很好地处理有序变量。

3) One-Hot 编码

One-Hot 编码创建新列,指示原始数据中每个可能值的存在(或不存在)。为了理解这一点,我们将通过一个示例进行介绍。

在这里插入图片描述

在原始数据集中,“Color”是一个类别变量,有三个类别:“Red”、“Yellow” 和 “Green”。

对应的独热编码包含每个可能值的一列,以及原始数据集中每行的一行。当原值为“Red”时,我们在“Red”列中加1;如果原值为“Yellow”,我们在“Yellow”列中加1,依此类推。与有序编码不同,一个One-Hot不假定类别的顺序。

​ 与有序编码不同,一个One-Hot不假定类别的顺序。

因此,如果分类数据中没有明确的顺序(例如,“Red”既不大于也不小于“Yellow”),可以预期这种方法特别有效。我们把没有内在排序的分类变量称为名义变量。

如果类别变量具有大量值(即,通常不会将其用于超过15个不同值的变量),独热编码通常在分类变量取大量值时表现不佳。

3、举例

在前一个教程中,我们将使用墨尔本住房数据集。

我们将不关注数据加载步骤。相反,您可以想象您已经拥有了 X _ train、 X _ valid、 y _ train 和 y _ valid中的训练和验证数据。

In [1]:

import pandas as pd
from sklearn.model_selection import train_test_split
#读取数据
data = pd.read_csv('E:/data_handle/melb_data.csv')
#从预测器中分离目标
y =data.Price
X = data.drop(['Price'],axis=1)
#将数据划分为训练和验证子集
X_train_full, X_valid_full, y_train, y_valid = train_test_split(X, y, train_size=0.8,test_size=0.2,random_state=0

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/418735.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Upload靶场通关教程(旧版20关)

文件上传类型&#xff1a; 前端验证&#xff1a;1 MIME类型验证&#xff1a;2 黑名单验证&#xff1a;3~10&#xff0c;19 大小写绕过、空格绕过、解析后缀数字绕过、点绕过、/绕过、::$DATA绕过 白名单验证&#xff1a;11~18&#xff0c;20 %00截断、二次渲染、文件包含、…

翻译: Anaconda 与 miniconda的区别

Anaconda 和 miniconda 是广泛用于数据科学的软件发行版&#xff0c;用于简化包管理和部署。 1. 主要有两个区别&#xff1a; packages包数量&#xff1a; Anaconda 附带了 150 多个数据科学包&#xff0c;而 miniconda 只有少数几个。Interface接口&#xff1a;Anaconda 有…

洋州影院购票系统:如何用Java、Spring Boot、Vue和MySQL实现现代化管理

✍✍计算机编程指导师 ⭐⭐个人介绍&#xff1a;自己非常喜欢研究技术问题&#xff01;专业做Java、Python、微信小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。 ⛽⛽实战项目&#xff1a;有源码或者技术上的问题欢迎在评论区一起讨论交流&#xff01; ⚡⚡ Java实战 |…

PACS医学影像采集传输与存储管理、影像诊断查询与报告管理系统,MPR多平面重建

按照国际标准IHE规范&#xff0c;以高性能服务器、网络及存储设备构成硬件支持平台&#xff0c;以大型关系型数据库作为数据和图像的存储管理工具&#xff0c;以医疗影像的采集、传输、存储和诊断为核心&#xff0c;集影像采集传输与存储管理、影像诊断查询与报告管理、综合信息…

记录一个sql:查询商品码对应多个商品的商品码

目录 背景sql 语句总结 背景 一个项目中&#xff0c;商品表和商品码表是一对多的关系&#xff0c;但由于程序没有控制好&#xff0c;导致有些商品码对应有多个商品&#xff0c;为了修正数据&#xff0c;我们得把商品码对应多个商品的商品码找出来. sql 语句 goods_detail表结构…

爬虫进阶之selenium模拟浏览器

爬虫进阶之selenium模拟浏览器 简介环境配置1、建议先安装conda2、创建虚拟环境并安装对应的包3、下载对应的谷歌驱动以及与驱动对应的浏览器 代码setting.py配置scrapy脚本参考中间件middlewares.py 附录&#xff1a;selenium教程 简介 Selenium是一个用于自动化浏览器操作的…

【Linux】python版本控制

文章目录 1.查看目前python的版本2.添加软件源并更新3.选择你想要下载的版本4.警示&#xff1a;没必要设置默认版本误区千万千万不要覆盖python3软链接解决办法 5.安装pip换源 6.环境管理 网上有很多教程都是教导小白去官方下载之后编译安装。但是&#xff0c;小白连cmake是什么…

文字的baseLine算法

使用canvas的drawText方法时候&#xff0c;除了要传入画笔和text还需要传入一个x坐标和y坐标。这边的x和y坐标是Baseline的坐标。 public void drawText(NonNull String text, float x, float y, NonNull Paint paint) {super.drawText(text, x, y, paint);} top:是 baseLine到…

【AI】人工智能和图像编码(2)

传统图像编解码与智能图像编解码&#xff0c;都是要编码和解码&#xff0c;但还是有一些区别的。 相关相同点和要点描述如下&#xff1a; 一、区别 1.1 技术原理 传统图像编解码&#xff1a;主要依赖于固定的算法和标准&#xff0c;如JPEG、MPEG等&#xff0c;进行图像的压…

Divisibility Problem-codefordes

题目链接&#xff1a;Problem - A - Codeforces 解题思路&#xff1a; 如果 a 能被 b整除&#xff0c;就不需要进行改变&#xff0c;直接输出0&#xff0c;否则输出((a / b) 1) * b - a&#xff0c;找到最小的能被b整除的数。 下面是c代码&#xff1a; #include<iostrea…

重构改善既有代码的设计-学习(一):封装

1、封装记录&#xff08;Encapsulate Record&#xff09; 一些记录性结构&#xff08;例如hash、map、hashmap、dictionary等&#xff09;&#xff0c;一条记录上持有什么字段往往不够直观。如果其使用范围比较宽&#xff0c;这个问题往往会造成许多困扰。所以&#xff0c;记录…

Hive-SQL语法大全

Hive SQL 语法大全 基于语法描述说明 CREATE DATABASE [IF NOT EXISTS] db_name [LOCATION] path; SELECT expr, ... FROM tbl ORDER BY col_name [ASC | DESC] (A | B | C)如上语法&#xff0c;在语法描述中出现&#xff1a; []&#xff0c;表示可选&#xff0c;如上[LOCATI…