TCP缓存(C++)


系统为每个 socket 创建了发送缓冲区和接收缓冲区,应用程序调用 send()/write()函数发送数据的
时候,内核把数据从应用进程拷贝 socket 的发送缓冲区中;应用程序调用 recv()/read()函数接收数据的时候,内核把数据从 socket 的接收缓冲区拷贝应用进程中。
发送数据即把数据放入发送缓冲区中。
接收数据即从接收缓冲区中取数据。

查看 socket 缓存的大小的代码:
 

int bufsize = 0;
socklen_t optlen = sizeof(bufsize);
getsockopt(sockfd, SOL_SOCKET, SO_SNDBUF, &bufsize, &optlen); // 获取发送缓冲区的大小。
cout << "send bufsize=" << bufsize << endl;
getsockopt(sockfd, SOL_SOCKET, SO_RCVBUF, &bufsize, &optlen); // 获取接收缓冲区的大小。
cout << "recv bufsize=" << bufsize << endl;

演示:

问题:
1)send()函数有可能会阻塞吗? 如果自己的发送缓冲区和对端的接收缓冲区都满了,会阻塞,在高并发的场景有可能发生。
2)向 socket 中写入数据后,如果关闭了 socket,对端还能接收到数据吗?可以,事件和数据都已经储存在接收缓存区。

Nagle 算法
在 TCP 协议中,无论发送多少数据,都要在数据前面加上协议头,同时,对方收到数据后,也需要回复 ACK 表示确认。为了尽可能的利用网络带宽,TCP 希望每次都能够以 MSS(Maximum SegmentSize,最大报文长度)的数据块来发送数据。
Nagle 算法就是为了尽可能发送大块的数据,避免网络中充斥着小数据块。
Nagle 算法的定义是:任意时刻,最多只能有一个未被确认的小段,小段是指小于 MSS 的数据
块,未被确认是指一个数据块发送出去后,没有收到对端回复的 ACK。

举个例子:发送端调用 send()函数将一个 int 型数据(称之为 A 数据块)写入到 socket 中,A 数
据块会被马上发送到接收端,接着,发送端又调用 send()函数写入一个 int 型数据(称之为 B 数据
块),这时候,A 块的 ACK 没有返回(已经存在了一个未被确认的小段),所以 B 块不会立即被发送,而是等 A 块的 ACK 返回之后(大概 40ms)才发送。
TCP 协议中不仅仅有 Nagle 算法,还有一个 ACK 延迟机制:当接收端收到数据之后,并不会马上
向发送端回复 ACK,而是延迟 40ms 后再回复,它希望在 40ms 内接收端会向发送端回复应答数据,这样 ACK 就可以和应答数据一起发送,把 ACK 捎带过去。
如果 TCP 连接的一端启用了 Nagle 算法,另一端启用了 ACK 延时机制,而发送的数据包又比较
小,则可能会出现这样的情况:发送端在等待上一个包的 ACK,而接收端正好延迟了此 ACK,那么这个正要被发送的包就会延迟 40ms。
解决方案
开启 TCP_NODELAY 选项,这个选项的作用就是禁用 Nagle 算法。

#include <netinet/tcp.h> // 注意,要包含这个头文件。
int opt = 1;
setsockopt(sockfd, IPPROTO_TCP, TCP_NODELAY,&opt,sizeof(opt));

对时效要求很高的系统,例如联机游戏、证券交易,一般会禁用 Nagle 算法。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/418950.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Navicat平替工具,一款免费开源的通用数据库工具

前言 前段时间有小伙伴在群里提问说&#xff1a;因为公司不允许使用破解版的Navicat&#xff0c;有好用的Navicat平替工具推荐吗&#xff1f;今天分享一款免费开源的通用数据库工具&#xff1a;DBeaver。 DBeaver工具介绍 DBeaver是一款免费的跨平台数据库工具&#xff0c;适…

负载均衡流程

1、负载均衡流程图 2、触发负载均衡函数trigger_load_balance void trigger_load_balance(struct rq *rq) { /* Dont need to rebalance while attached to NULL domain */ if (unlikely(on_null_domain(rq)))//当前调度队列中的调度域是空的则返回 return; i…

[小程序]API、数据与事件

一、API ①事件监听API 以on开头&#xff0c;用来监听事件的触发&#xff08;如wx.inWindowResize&#xff09; ②同步API 以Sync结尾&#xff0c;且可以通过函数返回值获取&#xff0c;执行错误会抛出异常&#xff08;如wx.setStorageSync&#xff09; ③异步API 类似网页中的…

v32.条件运算符

1.是三元运算符&#xff0c;需要3个操作数 条件运算符可以替换if-else语句 2. marks &#xff1e; 33是一个表达式&#xff0c;返回值是false/true&#xff1b;等号左边是左值&#xff0c;右边那部分是右值。 如果第一个表达式返回true&#xff0c;那么将第二个表达式返回&…

【日常聊聊】边缘计算的挑战和机遇

&#x1f34e;个人博客&#xff1a;个人主页 &#x1f3c6;个人专栏&#xff1a; 日常聊聊 ⛳️ 功不唐捐&#xff0c;玉汝于成 目录 前言 正文 边缘计算的挑战和机遇 一&#xff1a;数据安全与隐私保护 二&#xff1a;网络稳定性与可靠性 三&#xff1a;实时性与性能优…

ESP32-HTTP_webServer库(Arduino)

ESP32-HTTP 介绍 ESP32是一款功能强大的微控制器&#xff0c;具有丰富的网络和通信功能。其中之一就是支持HTTP协议&#xff0c;这使得ESP32可以用于创建Web服务器。 HTTP是什么&#xff1f; HTTP&#xff08;Hyper Text Transfer Protocol&#xff09;&#xff0c;即超文本传…

[计算机网络]基本概念

目录 1.ip地址和端口号 1.1IP地址 1.2端口号 2.认识协议 2.1概念&#xff1a; 2.2知名协议的默认端口 3.五元组 4.协议分层 4.1分层的作用 4.2OSI七层模型 4.3TCP/IP五层&#xff08;四层&#xff09;模型 ​编辑4.4网络设备对应的分层&#xff1a; ​编辑以下为跨…

零日漏洞:威胁与应对

一、引言 随着信息技术的迅猛发展&#xff0c;网络安全问题日益凸显。其中&#xff0c;零日漏洞已成为当今网络安全领域最受关注的问题之一。本文将深入探讨零日漏洞的威胁、产生原因以及应对策略&#xff0c;以期提高人们对这一问题的认识和防范意识。 二、零日漏洞的威胁 …

用C语言实现简单的三子棋游戏

目录 1 -> 模块简介 2 -> test.c 3 -> game.c 4 -> game.h 1 -> 模块简介 test.c:测试游戏逻辑 game.c: 函数的实现 game.h:函数的声明 2 -> test.c #define _CRT_SECURE_NO_WARNINGS 1#include "game.h";void menu() {printf("****…

一文读懂「RAG,Retrieval-Augmented Generation」检索增强生成

Retrieval-Augmented Generation&#xff08;RAG&#xff09;作为机器学习和自然语言处理领域的一大创新&#xff0c;不仅代表了技术的进步&#xff0c;更在实际应用中展示了其惊人的潜力。 RAG结合了检索&#xff08;Retrieval&#xff09;和生成&#xff08;Generation&#…

Miniconda介绍以及安装

Miniconda 是 conda 的免费最小安装程序。它是 Anaconda 的小型引导版本&#xff0c;仅包括 conda、Python、它们 两者都依赖于少量其他有用的软件包&#xff08;如 pip、zlib 和其他一些软件包&#xff09;。如果您需要更多软件包&#xff0c;请使用 命令从 Anaconda 的公共存…

pytest - Getting Start

前言 项目开发中有很多的功能&#xff0c;通常开发人员需要对自己编写的代码进行自测&#xff0c;除了借助postman等工具进行测试外&#xff0c;还需要编写单元测试对开发的代码进行测试&#xff0c;通过单元测试来判断代码是否能够实现需求&#xff0c;本文介绍的pytest模块是…