【强化学习】QAC、A2C、A3C学习笔记

强化学习算法:QAC vs A2C vs A3C

引言

经典的REINFORCE算法为我们提供了一种直接优化策略的方式,它通过梯度上升方法来寻找最优策略。然而,REINFORCE算法也有其局限性,采样效率低高方差收敛性差难以处理高维离散空间

为了克服这些限制,研究者们引入了Actor-Critic框架,它结合了价值函数和策略梯度方法的优点(适配连续动作空间和随机策略),旨在提升学习效率和稳定性。

QAC(Quality Actor-Critic)

实现原理

QAC算法通过结合Actor-Critic架构的优势,实现了策略和价值函数的有效融合。在此框架中,Actor基于策略梯度法选择动作,而Critic组件评估这些动作的价值,以指导Actor的策略更新。

在这里插入图片描述
由图可知,在Actor-Critic算法中,TD Error用于更新Critic的价值函数,也用来指导Actor的策略梯度更新。简单来说,如果TD Error较大,意味着当前策略对于该状态-动作对的价值预测不准确,需要更大的调整。

优势与局限

QAC的主要优势在于其将策略探索与价值评估相结合,旨在提升决策质量与学习速度。然而,由于依赖样本来更新策略,它可能会面临高方差问题,尤其是在样本数量较少或者环境噪声较大的情况下。 这要求在实际应用中进行适当的调整和优化,以实现最佳性能。

A2C(Advantage Actor-Critic)

实现原理

A2C通过引入advantage函数 A π ( s t , a t ) A^\pi(s_t,a_t) Aπ(st,at),来指导策略更新。这个函数评估执行某个动作相比平均水平好多少,旨在减少方差并提高策略的学习效率。

优势与局限

A2C的同步框架减少了策略更新中的噪声,提升了学习稳定性。作为on-policy算法,它直接在策略路径上进行更新,保证了策略的一致性。

好像基本上能搜的资料都没有说这个方法的局限。
从经验上看,这个方法的样本利用率不高(会比DQN还要难收敛一点),而且对超参数敏感(这算是强化学习的通病了)。

A3C(Asynchronous Advantage Actor-Critic)

实现原理

A3C通过多个并行的Actor-Critic实例进行学习,这些实例独立探索并异步更新主策略。每个实例有自己的环境副本,降低了策略更新中的相关性
在这里插入图片描述

优势与局限

A3C的异步更新可以在多个环境副本上并行处理,加快学习速度,同时保持了策略的多样性。

但是这就要看你的计算资源够不够了🤣

小结(比较)

  • QAC:一种基本的Actor-Critic方法,通过Q值来指导策略的更新。
  • A2C:利用advantage function代替Q值,减少了方差并可能加速了学习过程。它通常在一个单一的环境中运行,这意味着它在更新策略时会等待每一步都完成。
  • A3C:在A2C的基础上添加异步执行,允许多个agents并行探索和学习,这样不同的agent可以探索不同的策略空间,增加样本的多样性并加速学习过程。

A2C和A3C的核心区别在于A3C的异步更新机制,它允许并行处理多个环境实例,从而提高了算法的效率和鲁棒性。而QAC则为这些更先进的算法提供了基础框架。在实际应用中,选择哪种算法取决于计算资源、环境的复杂度以及所需的学习效率。

A2C提供了同步更新的稳定性,而A3C通过异步更新增加了学习效率。
两者都采用了advantage函数改善策略梯度,但A3C在多核心或多处理器系统上更具优势。

最后的问答

  • 相比REINFORCE算法,为什么A2C可以提升速度?

A2C增加了Critic组件用于估计状态价值,这样Actor可以利用Critic提供的价值信息来更新策略,使得学习过程更加高效。

  • A2C、A3C是on-policy的吗?

A2C算法是on-policy的,因为它根据当前策略生成的样本来更新这个策略,这意味着它评估和改进的是同一个策略。

A3C算法虽然采用了异步的更新机制,但它本质上仍然是on-policy的。尽管这些更新是异步发生的,但每个actor的策略更新都是基于其自身的经验,而这些经验是根据各自的当前策略产生的。

PS:后面有个最大熵的Soft Acotr Critic,这个就是off-policy。

参考资料

joyrl-book 第 10 章 Actor-Critic 算法

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/427233.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ansible 常用模块

目录 1.ping模块 2.command模块 3. shell模块 4.copy模块 5.file模块 6.fetch模块 7.cron模块 8.yum模块 9.service模块 10.user模块 11.group模块 12.script 模块 13.setup模块 14. get_url模块 15.stat模块 16.unarchive模块 1.ping模块 使用ansible db1 -m pin…

前端echarts图形报表常见的样式配置

文章目录 🐒个人主页🏅Vue项目常用组件模板仓库📖前言:🐕1.深色主题🐕2.改变柱状图颜色🐕突然发现去问ai,更容易理解,那就不总结了 🐒个人主页 🏅…

精通 VS 调试技巧,学习与工作效率翻倍!

​ ✨✨ 欢迎大家来到贝蒂大讲堂✨✨ ​ 🎈🎈养成好习惯,先赞后看哦~🎈🎈 ​ 所属专栏:C语言学习 ​ 贝蒂的主页:Betty‘s blog 1. 什么是调试 当我们写代码时候常常会遇见输出结果不符合我们预…

【C++】命名空间详解

目录 前言 命名空间的定义 命名空间的使用 前言 在C/C中,变量、函数和后面要学到的类都是大量存在的,这些变量、函数和类的名称将都存 在于全局作用域中,可能会导致很多冲突。使用命名空间的目的是对标识符的名称进行本地化, 以…

微信小程序开发创建component组件,报错WXML file not found解决方案

报错如下: 解决方案: 在组件.json文件加上"styleIsolation": "apply-shared",:

信号量机制解决经典同步互斥问题

生产者 / 消费者问题、读者 / 写者问题和哲学家问题是操作系统的三大经典同步互斥问题。本文将介绍这三个问题的基本特点以及如何用信号量机制进行解决。 在分析这三个问题之前,我们首先需要了解用信号量机制解决同步互斥问题的一般规律: 实现同步与互斥…

详解JavaScript异步编程之Promise

一、前言 JavaScript是⼀⻔典型的异步编程脚本语⾔,在编程过程中会⼤量的出现异步代码的编写,在JS的整个发展历程中,对异步编程的处理⽅式经历了很多个时代,其中最典型也是现今使⽤最⼴泛的时代,就是Promise对象处理异…

curl命令导致你下载的文件为空原因分析

文章目录 1.前言2. 通过curl -O 下载远端文件2.1 执行curl -O下载远端文件2.2 通过curl -v 查看详细的请求和响应的信息 3.通过在curl -O 中增加 -L 参数保证curl能够自动跟踪和请求远端返回的重定向地址4.结论 1.前言 最近在进行线上项目调试的过程中需要安装调试工具&#xf…

活动回顾丨云原生技术实践营上海站「云原生 AI 大数据」专场(附 PPT)

AI 势不可挡,“智算”赋能未来。2024 年 1 月 5 日,云原生技术实践营「云原生 AI &大数据」专场在上海落幕。活动聚焦容器、可观测、微服务产品技术领域,以云原生 AI 工程化落地为主要方向,希望帮助企业和开发者更快、更高效地…

版图设计工程师的面试一般会问啥?

之前全面为大家解析了模拟版图,但面对面对即将找工作或者是面对明年春招的同学,可能对于模拟版图面试这块更感兴趣。 秋招已经进入白热化阶段,今天移知教育为大家整理出,模拟版图几道模拟版图面试题,带你直击模拟版图…

蓝牙BLE基础知识

目录 一、初识蓝牙BLE 1.课程介绍 2.为什么需要蓝牙技术 3.蓝牙发展历史 4.蓝牙技术优势 5.蓝牙技术简介 6.学习补充 二、物理层(Physical layer) 1.模拟调制 2.数字调制 3.射频信道 4.学习补充 三、链路层(link layer&#xff0…

基于若依的ruoyi-nbcio流程管理系统一种简单的动态表单模拟测试实现(五)

更多ruoyi-nbcio功能请看演示系统 gitee源代码地址 前后端代码: https://gitee.com/nbacheng/ruoyi-nbcio 演示地址:RuoYi-Nbcio后台管理系统 更多nbcio-boot功能请看演示系统 gitee源代码地址 后端代码: https://gitee.com/nbacheng/n…