[pytorch入门] 6. 神经网络

基本介绍

  • torch.nn:
    在这里插入图片描述
    • Containers:基本骨架
    • Convolution Layers: 卷积层
    • Pooling layers:池化层
    • Non-linear Activations (weighted sum, nonlinearity):非线性激活
    • Normalization Layers:正则化层

Containers类

介绍

containers相对重要的一个类,主要给神经网络定义了一些骨架、一些结构,后面那些类都是要向骨架中填充的东西
里面有6个模块,其中module模块是里面最重要的一个模块
在这里插入图片描述
一般自己定义类,然后继承nn.module
里面一定要写的两个函数:__init__()和forward函数(前向传播)

from torch import nn
import torch
class Test(nn.Module):def __init__(self):super().__init__()def forward(self,input):output = input+1return outputtest = Test()
# print(test.forward(1))
x = torch.tensor(1)
print(test(x))

Sequential 序列

将网络序列放到sequential里面,这样就可以调用一个模块连续使用自己定义的网络
这样会让代码更加简洁易懂

model = nn.Sequential(nn.Conv2d(1,20,5),nn.ReLU(),nn.Conv2d(20,64,5),nn.ReLU())# Using Sequential with OrderedDict. This is functionally the
# same as the above code
model = nn.Sequential(OrderedDict([('conv1', nn.Conv2d(1,20,5)),('relu1', nn.ReLU()),('conv2', nn.Conv2d(20,64,5)),('relu2', nn.ReLU())]))

在下节实战中进行实例演示

Convolution 卷积

基础理解

import torch
import torch.nn.functional as Finput = torch.tensor([[1,2,0,3,1],[0,1,2,3,1],[1,2,1,0,0],[5,2,3,1,1],[2,1,0,1,1]])
kernel = torch.tensor([[1,2,1],[0,1,0],[2,1,0]])# output = torch.nn.Conv2d(input)
# print(input.shape)
# print(kernel.shape)  # 目前不符合Con2d的尺寸要求,需要进行尺寸变换input = torch.reshape(input, (1,1,5,5))  # 1个通道,1个样本,5行5列
kernel = torch.reshape(kernel, (1,1,3,3))  # 1个通道,1个样本,3行3列print(input.shape)
print(kernel.shape)# 之后进行卷积操作
output1 = F.conv2d(input, kernel, stride=1, padding=0) # stride步长,padding在输入图像的四周进行填充
print(output1)output2 = F.conv2d(input, kernel, stride=2) # stride步长,padding填充
print(output2)output3 = F.conv2d(input, kernel, stride=1, padding=1) # stride步长,padding在输入图像的四周进行填充
print(output3)   # 会发现比padding=0时大了一圈,因为padding=1时,会在输入图像的四周填充一圈0output4 = F.conv2d(input, kernel, stride=1, padding=2) # stride步长,padding在输入图像的四周进行填充
print(output4)   # 会发现比padding=1时大了一圈,因为padding=2时,会在输入图像的四周填充两圈0

在这里插入图片描述

参数概念

def torch.nn.Conv2d(in_channels, out_channels, kernel_size,stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)# in_channels:int,输入通道
# out_channels :int,输出通道
# kernel_size :int或元祖,卷积核的大小
# stride:int or tuple, optional。横向纵向的步径大小 默认为1
# padding (int, tuple or str, optional) 是否需要在输入图像的边缘进行填充,默认为0 不填充
# padding_mode (str, optional) – 'zeros', 'reflect', 'replicate' or 'circular' 控制如何填充,Default: 'zeros'即全部填充为0
# dilation (int or tuple, optional) – Spacing between kernel elements. Default: 1 卷积核之间的距离,一般为空洞卷积,不常用
# groups (int, optional) – Number of blocked connections from input channels to output channels. Default: 1
# bias (bool, optional) – If True, adds a learnable bias to the output. Default: True

实际上不需要自己写卷积核,他是会自己在输入图像中采样获得,只需要定义卷积核大小即可

使用

import torch
import torchvision
from torch.utils.data import DataLoader
from torch import nn
from torch.utils.tensorboard import SummaryWriterdataset = torchvision.datasets.CIFAR10("./dataset",train = False, transform=torchvision.transforms.ToTensor(),download=True)dataloader = DataLoader(dataset, batch_size=64, shuffle=True)# 搭建简单神经网络
class Test(nn.Module):def __init__(self):super(Test,self).__init__()self.conv1 = nn.Conv2d(in_channels=3,out_channels=6,kernel_size=3,stride=1,padding=0)def forward(self,x):x = self.conv1(x)return xnet = Test()writer = SummaryWriter('logs')
step = 0
for data in dataloader:    # 一次性取出一个batch_size的数据,daaloader的使用见前面文章imgs, targets = dataoutput = net(imgs)print(imgs.shape)print(output.shape)# print(output)print('-------')writer.add_images("input", imgs, step)# 但是这里output的shape是[64,6,30,30],6个通道没办法显示# 因此需要对output进行处理,使其变成[64,3,30,30]# 比较简单的方案是6个通道直接切开,变成两个bitch,每个bitch有3个通道(不是很严谨)# 当不知道batch_size的大小时,可以使用-1来代替,他会根据后面的数据直接计算output = torch.reshape(output,(-1,3,30,30))writer.add_images("output", output, step)step = step+1

在这里插入图片描述

辨析:nn 与 nn.functional

上面卷积操作的两个代码中,一个用的torch.nn.functional中的conv2d,一个用的torch.nn中的conv2d
nn 与 nn.functional有很多相同的函数,同时也有很多差异

相同点

  • 实际功能相同,即nn.Conv2d和nn.functional.conv2d 都是进行卷积,nn.Dropout 和nn.functional.dropout都是进行dropout等
  • 运行效率近乎相同

不同点

  • nn.functional.xxx是函数接口,而nn.XXX是nn.functional.xxx的类封装,并且nn.xxx都集成于同一个祖先nn.Module。这一点导致了nn.XXX除了具有nn.functional.xxx的功能之外,内部附带了nn.Module相关的属性和方法,例如train(), eval(),load_state_dict, state_dict 等。
  • 两者的调用方式不同
    • nn.xxx需要先实例化并传入参数,然后以函数调用的方式调用实例化的对象并传入输入数据

      input = img
      conv = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, padding=1)  # 实例化
      out = conv(input) # 以函数调用的方式调用实例化的对象并传入输入数据
      
    • nn.functional.xxx同时传入输入数据和weight、bias等其他参数

      weight = torch.rand(64,3,3,3)
      bias = torch.rand(64)
      out = nn.functional.conv2d(inputs, weight, bias, padding=1) # 调用函数的同时传入数据与参数
      
  • nn.Xxx继承于nn.Module, 能够很好的与nn.Sequential结合使用, 而nn.functional.xxx无法与nn.Sequential结合使用。
    fm_layer = nn.Sequential(nn.Conv2d(3, 64, kernel_size=3, padding=1),nn.BatchNorm2d(num_features=64),nn.ReLU(),nn.MaxPool2d(kernel_size=2),nn.Dropout(0.2)
  • nn.xxx不需要自己定义和管理weight,而functional.xxx需要自己定义weight,每次调用的时候都需要手动传入weight,不利于代码复用
    • 使用nn.xxx定义一个CNN
      class CNN(nn.Module):def __init__(self):super(CNN, self).__init__()self.cnn1 = nn.Conv2d(in_channels=1,  out_channels=16, kernel_size=5,padding=0)self.relu1 = nn.ReLU()self.maxpool1 = nn.MaxPool2d(kernel_size=2)self.cnn2 = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=5,  padding=0)self.relu2 = nn.ReLU()self.maxpool2 = nn.MaxPool2d(kernel_size=2)self.linear1 = nn.Linear(4 * 4 * 32, 10)def forward(self, x):x = x.view(x.size(0), -1)out = self.maxpool1(self.relu1(self.cnn1(x)))out = self.maxpool2(self.relu2(self.cnn2(out)))out = self.linear1(out.view(x.size(0), -1))return out
      
    • 用nn.function.xxx的写法
      class CNN(nn.Module):def __init__(self):super(CNN, self).__init__()self.cnn1_weight = nn.Parameter(torch.rand(16, 1, 5, 5))self.bias1_weight = nn.Parameter(torch.rand(16))self.cnn2_weight = nn.Parameter(torch.rand(32, 16, 5, 5))self.bias2_weight = nn.Parameter(torch.rand(32))self.linear1_weight = nn.Parameter(torch.rand(4 * 4 * 32, 10))self.bias3_weight = nn.Parameter(torch.rand(10))def forward(self, x):x = x.view(x.size(0), -1)out = F.conv2d(x, self.cnn1_weight, self.bias1_weight)out = F.relu(out)out = F.max_pool2d(out)out = F.conv2d(x, self.cnn2_weight, self.bias2_weight)out = F.relu(out)out = F.max_pool2d(out)out = F.linear(x, self.linear1_weight, self.bias3_weight)return out
      

选择

根据问题的复杂度和个人风格喜好决定
一般在能使用nn.xxx的情况下尽量使用,因为这样更能显示出网络间的层次关系,也更加纯粹

在nn.xxx不能满足功能需求时可以使用nn.functional.xxx,因为nn.functional.xxx更接近底层,更灵活

  • pytorch官方推荐:具有学习参数的(例如,conv2d, linear, batch_norm)采用nn.Xxx方式,没有学习参数的(例如,maxpool, loss func, activation func)等根据个人选择使用nn.functional.xxx或者nn.Xxx方式。

最大池化

介绍

池化的目的是保存主要内容的同时减少数据大小

用的比较多的为MaxPool2d,取kernel覆盖范围中最大的值输出

def MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=Flse,ceil_mode=False)
  • kernel_size:采样窗口大小
  • stride:步幅,注意这里默认值不一样了,卷积层为1,这里为kernel_size的大小
  • padding:填充值
  • dilation:kernel中每个格子中间是否存在间隔,一般不对其进行设置,有间隔时也称为空洞卷积
  • ceil_mode:设置为True时使用ceil模式,设置为False时使用floor模式
    • ceil模式:kernel覆盖不足时(边界越界时),保留获取的数值
    • floor模式:kernel覆盖不足时,不保留获取的数值

使用方法

import torch
from torch import nn
input = torch.tensor([[1,2,0,3,1],[0,1,2,3,1],[1,2,1,0,0],[5,2,3,1,1],[2,1,0,1,1]],#   dtype=torch.float32  # 如果报错时,可以尝试加上这一行)input = torch.reshape(input,(1,1,5,5)) # 使之满足输入要求class Test(nn.Module):def __init__(self):super(Test,self).__init__()self.maxpool = nn.MaxPool2d(kernel_size=3,padding=0,ceil_mode=False)def forward(self,input):output = self.maxpool(input)return outputnet = Test()
output = net(input)
print(output)

实例

import torch
from torch import nn
import torchvision
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriterdataset = torchvision.datasets.CIFAR10('./dataset',train=False,transform=torchvision.transforms.ToTensor())
dataloader = DataLoader(dataset, batch_size=4)class Test(nn.Module):def __init__(self):super(Test,self).__init__()self.maxpool = nn.MaxPool2d(kernel_size=3,padding=0,ceil_mode=False)def forward(self,input):output = self.maxpool(input)return outputnet = Test()
writer = SummaryWriter('logs')
step = 0for data in dataloader:imgs, targets = datawriter.add_images('input',imgs, step)output = net(imgs)   # 池化不会改变channel的数量,因此不需要reshapewriter.add_images('output',output, step)step = step+1
writer.close()

非线性激活

官方文档有很多非线性函数,这里举几个例子

ReLU

在这里插入图片描述
ReLU有一个参数inplace:用于指明是否修改原值

  • inplace=True:没有返回值,直接修改原值
  • inplace=False:不修改原值,有结果作为返回值返回
from torch import nn
import torchclass Test(nn.Module):def __init__(self):super(Test, self).__init__()self.relu1 = nn.ReLU(inplace=False)def forward(self, input):output = self.relu1(input)return outputnet = Test()input = torch.tensor([[1,2,0,-3,1],[0,1,-2,3,1],[1,2,1,0,0],[-5,2,3,1,1],[-2,1,0,1,1]])output = net(input)
print(output)

在这里插入图片描述

Sigmod

ReLU对图像的处理不明显,这里用sigmod举例
在这里插入图片描述

from torch import nn
import torch
from torch.utils.tensorboard import SummaryWriter
import torchvision
from torch.utils.data import DataLoaderdataset = torchvision.datasets.CIFAR10('./dataset',train=False,transform=torchvision.transforms.ToTensor())
dataloader = DataLoader(dataset=dataset, batch_size=64)class Test(nn.Module):def __init__(self):super(Test, self).__init__()self.sigmoid1 = nn.Sigmoid()def forward(self, input):output = self.sigmoid1(input)return outputnet = Test()
writer = SummaryWriter('logs')
step=0
for data in dataloader:imgs, targets = datawriter.add_images('input',imgs,step)output = net(imgs)writer.add_images('output',output,step)step = step+1
writer.close()

Linear Layers:线性层

在这里插入图片描述
比较常见的这种图实际上就是由线性层一个一个搭建出来的

def torch.nn.Linear(in_features, out_features, bias=True, device=None, dtype=None

参数中的in_features指的就是上面输入层数据的个数(即d),out_features即为输出层个数(前半部分的输出层为中间的隐藏层),bias=True时,计算会加上偏置b

# 例:将图片(如5*5)展开成一行(如1*25),经过线性层转换为x个import torchvision
import torch
from torch import nn
from torch.utils.data import DataLoaderdatasets = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(datasets, batch_size=64)class Test(nn.Module):def __init__(self):super(Test, self).__init__()self.liner1 = nn.Linear(196608,10)def forward(self, input):output = self.liner1(input)return outputnet = Test()for data in dataloader:imgs, targets = dataprint("原始大小:",imgs.shape) # output = torch.reshape(imgs,(1,1,1,-1)) # 将imgs展开成一行 输出效果见第一张图# 这里也可以直接用torch.flatten(imgs)来展开output = torch.flatten(imgs)  # 输出效果见第二张图print("转化为一维", output.shape)  # 先用这个来看一下展开后的大小,这是决定了线性层的输入大小# breakoutput2 = net(output)print("线性层转化后", output2.shape)break

使用reshape:
在这里插入图片描述
使用torch.flatten:
在这里插入图片描述

其它层

Normalization 正则化层: 采用正则化的话会提高神经网络的训练速度
Recurrent Layers:一些特定的网络结构,含有RNN、LSTM等
Transformer Layers:已经写好的特定结构,与上面类似
Dropout Layers:也是在特定网络中才需要
Distance Functions:计算两个层之间的误差
Loss Functions:计算loss

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/427750.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

uniapp开发过程一些小坑

问题1、uniapp使用scroll-view的:scroll-into-view“lastChatData“跳到某个元素id时候,在app上不生效,小程序没问题 使用this.$nextTick或者 setTimeout(()>{that.lastChatData 元素id },500) 进行延后处理就可以了。 问题2:uniapp开…

SpringCloud Alibaba Sentinel 与 SpringCloud Gateway 的限流有什么差别?(三种限流算法原理分析)

目录 一、Sentinel 与 Gateway 的限流有什么差别? 1.1、前置知识 - 四种常见的限流算法 1.1.1、Tips 1.1.2、计数器算法 1)固定窗口计数器算法 2)滑动窗口计数器算法 1.1.3、令牌桶算法 1.1.4、漏桶算法 1.2、解决问题 一、Sentinel…

php低版本(7.4)配置过程中遇到的问题及基本解决手段

目前php不支持较低版本的安装,如果安装低版本必须借助第三方库shivammathur //将第三方仓库加入brewbrew tap shivammathur/php //安装PHPbrew install shivammathur/php/php7.4 可能出现的问题 像这样突然中止然后报错,一般是网络问题,或…

如何在KaLi虚拟操作系统中安装 PHPstudy

1、进入KaLi虚拟机桌面后,找到最上方一栏中的火狐浏览器图标并打开 2、在地址搜索栏中搜索网址: https://www.xp.cn 小皮面板(phpstudy) - 让天下没有难配的服务器环境! (xp.cn) 3、进入界面后选择最上端的 Linux版 板块 4、选择后下…

服务器管理平台(6)- Utils

Utils 本篇为服务器管理平台的结篇,讲述一些必要的Util,如钉钉告警、安全加密、远程登录等功能的实现 1、钉钉告警 1.1、SQL配置告警规则 逻辑磁盘容量已使用比例超过90% 超过30天未登录 字段名称字段类型解释Idint自增IDTablestring监测表名Metri…

幻兽帕鲁PalWorld服务器搭建详细教程

幻兽帕鲁PalWorld是一款由Pocketpair开发的游戏,融合了多种玩法,其独特的题材和画风吸引了很多玩家。为了更好地进行游戏体验,很多玩家选择自行搭建服务器。本文将详细介绍如何搭建幻兽帕鲁PalWorld服务器。 第一步:购买服务器 根…

瓦片地图编辑器——实现卡马克卷轴的编辑,键盘控制游戏移动和鼠标点击游戏编辑通过同一个视口实现。

左边是游戏地图编辑区,右边是地图缓冲区,解决了地图缓冲区拖动bug,成功使得缓冲区可以更新。 AWSD进行移动 鼠标左右键分别是绘制/拖动 按F1健导出为mapv3.txt F2清空数组 打印的是游戏数组 easyx开发devcpp 5.11 easyx20220922版本 #…

【日志框架】

日志打印 建议用{}占位而不是字符串拼接打日志前先判断日志级别是否可用: 先根据等级过滤规则再决定写不写;先往一个管道写了内容,但再经等级过滤丢弃,徒增开销。 日志框架 Slf4J Slf4J 不是底层日志框架,只是门面…

搭建《幻兽帕鲁》服务器需要怎样配置的云服务器?

随着《幻兽帕鲁》这款游戏的日益流行,越来越多的玩家希望能够在自己的服务器上体验这款游戏。然而,搭建一个稳定、高效的游戏服务器需要仔细的规划和配置。本文将分享搭建《幻兽帕鲁》服务器所需的配置及搭建步骤,助力大家获得更加畅快的游戏…

深入理解MySQL InnoDB线程模型

当我们谈论数据库性能时,存储引擎的线程模型是一个不可忽视的方面。MySQL的InnoDB存储引擎,作为目前最受欢迎的存储引擎之一,其线程模型的设计对于实现高并发、高性能的数据操作至关重要。在本文中,我们将深入探讨MySQL InnoDB线程…

CPMS靶场练习

关键:找到文件上传点,分析对方验证的手段 首先查看前端发现没有任何上传的位置,找到网站的后台,通过弱口令admin 123456可以进入 通过查看网站内容发现只有文章列表可以进行文件上传;有两个图片上传点 图片验证很严格…

Dubbo 3.x源码(16)—Dubbo服务发布导出源码(5)

基于Dubbo 3.1,详细介绍了Dubbo服务的发布与引用的源码。 此前我们学习了Dubbo 3.x源码(15)—Dubbo服务发布导出源码(4),也就是Dubbo远程服务导出export方法的上半部分,也就是doLocalExport源码,将会得到一个Exporter。 现在我们…