20240126请问在ubuntu20.04.6下让GTX1080显卡让whisper工作在large模式下?

20240126请问在ubuntu20.04.6下让GTX1080显卡让whisper工作在large模式下?
2024/1/26 21:19

问GTX1080模式使用large该如何配置呢?
这个问题没有完成,可能需要使用使用显存更大的显卡了!
比如GTX1080Ti 11GB,更猛的可以选择:RTX2080TI 22GB了!

以下四种large模式都异常了!
large
large-v1
large-v2
large-v3


rootroot@rootroot-X99-Turbo:~$ 
rootroot@rootroot-X99-Turbo:~$ watch -n 2 nvidia-smi
rootroot@rootroot-X99-Turbo:~$ whereis whisper
whisper: /home/rootroot/.local/bin/whisper

rootroot@rootroot-X99-Turbo:~$ 

root@rootroot-X99-Turbo:/# 
root@rootroot-X99-Turbo:/# find . -name whisper
./usr/lib/x86_64-linux-gnu/espeak-ng-data/voices/!v/whisper
./home/rootroot/.cache/whisper
./home/rootroot/.local/bin/whisper
./home/rootroot/.local/lib/python3.8/site-packages/whisper
./home/rootroot/3TB/76Android11.0/out3/.path/whisper
./home/rootroot/3TB/76Android11.0/out/.path/whisper
find: ‘./run/user/1000/gvfs’: Permission denied
root@rootroot-X99-Turbo:/# 
root@rootroot-X99-Turbo:/# whereis whisper
whisper:
root@rootroot-X99-Turbo:/# 
root@rootroot-X99-Turbo:/# 


https://www.bilibili.com/read/cv29388784/?jump_opus=1
【教程】利用whisper模型自动生成英文粗字幕

运行环境
硬件
NVIDIA GeForce 3090 GPU with 24GB VRAM

该模型理论上也能在CPU环境下运行,但极慢。GPU运行也需要占用较大显存。官方提供了多种规模的变体,所需显存从1GB-10GB不等(如下图)

软件
Ubuntu 18.04

理论上来说Windows和MacOS也是支持的,不过我没有尝试过

PyTorch 1.11.1

官方说的是在1.10.1上训练的,不过这个影响不大

操作步骤
克隆项目仓库 git clone https://github.com/openai/whisper.git
从源码安装Python包 pip install .
命令行使用 whisper audio.aac --model large-v3 --device cuda
whisper chs.mp4 --model large-v3 --device cuda

rootroot@rootroot-X99-Turbo:~/chs/large$ whisper chs.mp4 --model large-v3 --device cuda
Traceback (most recent call last):
  File "/home/rootroot/.local/bin/whisper", line 31, in <module>
    sys.exit(cli())
  File "/home/rootroot/.local/lib/python3.8/site-packages/whisper/transcribe.py", line 458, in cli
    model = load_model(model_name, device=device, download_root=model_dir)
  File "/home/rootroot/.local/lib/python3.8/site-packages/whisper/__init__.py", line 156, in load_model
    return model.to(device)
  File "/home/rootroot/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1160, in to
    return self._apply(convert)
  File "/home/rootroot/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 810, in _apply
    module._apply(fn)
  File "/home/rootroot/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 810, in _apply
    module._apply(fn)
  File "/home/rootroot/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 810, in _apply
    module._apply(fn)
  [Previous line repeated 2 more times]
  File "/home/rootroot/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 833, in _apply
    param_applied = fn(param)
  File "/home/rootroot/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1158, in convert

    return t.to(device, dtype if t.is_floating_point() or t.is_complex() else None, non_blocking)
torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU 0 has a total capacty of 7.92 GiB of which 22.75 MiB is free. Including non-PyTorch memory, this process has 7.54 GiB memory in use. Of the allocated memory 7.09 GiB is allocated by PyTorch, and 351.95 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory
Management and PYTORCH_CUDA_ALLOC_CONF
rootroot@rootroot-X99-Turbo:~/chs/large$ 
rootroot@rootroot-X99-Turbo:~/chs/large$ 


https://www.bilibili.com/read/cv27732514/
OpenAI 发布新版开源语音识别模型 whisper-large-v3


https://zhuanlan.zhihu.com/p/618140077
ChatGPT开源的whisper音频生成字幕,可本地搭建环境运行,效果质量很棒

Model = 'large-v2' #@param ['tiny.en', 'tiny', 'base.en', 'base', 'small.en', 'small', 'medium.en', 'medium', 'large', 'large-v2']

https://blog.csdn.net/lusing/article/details/132032965
2023年的深度学习入门指南(24) - 处理音频的大模型 OpenAI Whisper

我们还可以用model参数来选择模型,比如有10GB以上显存就可以选择使用large模型:
whisper va2.mp3 --model large --language Chinese
默认是small模型。还可以选择tiny, base, medium, large-v1和large-v2.

百度:UBUNTU 显存占用
https://www.bmabk.com/index.php/post/162904.html
Ubuntu显卡占用情况实时监控

每隔2s刷新一次内存使用情况
watch -n 2 free -m
watch -n 1 free -m
watch -n 0.5 free -m


https://blog.csdn.net/weixin_44554475/article/details/102909308
ubuntu实时显示网速cpu占用和内存占用率

1、ubuntu实时显示网速cpu占用率和内存占用率参考博客:
https://www.cnblogs.com/hjw1/p/7901048.html

2、ubuntu实时显示显存使用率:
此处的2表示没2秒显示一次显存情况

watch -n 2 nvidia-smi

3、安装htop查看内存情况:
安装:sudo apt-get install htop
启动: htop

4 ubuntu config clash for windows
https://hiif.ong/clash


https://blog.csdn.net/N1CROWN/article/details/122662706?utm_medium=distribute.pc_relevant.none-task-blog-2~default~baidujs_baidulandingword~default-0-122662706-blog-102909308.235^v43^pc_blog_bottom_relevance_base1&spm=1001.2101.3001.4242.1&utm_relevant_index=3
Ubuntu16.04 标题栏显示实时网速、CPU使用率

sudo apt-get install python3-psutil curl git gir1.2-appindicator3-0.1

cd indicator-sysmonitor
sudo make install
nohup indicator-sysmonitor &


https://www.toutiao.com/article/7315080543987597864/?app=news_article&timestamp=1706252345&use_new_style=1&req_id=2024012614590561ABBE53940F817BA3B3&group_id=7315080543987597864&tt_from=mobile_qq&utm_source=mobile_qq&utm_medium=toutiao_android&utm_campaign=client_share&share_token=e7d4aa95-92fe-45b6-9dc3-6570888672ab&source=m_redirect
Distil Whisper开源,语音识别比Whisper更快更小更准

https://blog.csdn.net/zcxey2911/article/details/134202112?spm=1001.2101.3001.4242.3&utm_medium=distribute.wap_relevant.none-task-blog-2~default~baidujs_baidulandingword~default-4-134202112-blog-130588477.237%5Ev3%5Ewap_relevant_t0_download&share_token=70d15c8b-cc0b-4ca6-8e5b-31a19ce3c062
持续进化,快速转录,Faster-Whisper对视频进行双语字幕转录实践(Python3.10)


https://blog.csdn.net/qq_48424581/article/details/134113540?share_token=53aba00d-104f-4b3b-be19-4da75f7897d7
3.6 模型的选择,参考如下
_MODELS = {
    "tiny.en": "https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt",
    "tiny": "https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt",
    "base.en": "https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt",
    "base": "https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt",
    "small.en": "https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt",
    "small": "https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt",
    "medium.en": "https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt",
    "medium": "https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt",
    "large-v1": "https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large-v1.pt",
    "large-v2": "https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt",
    "large": "https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt",
}


https://www.bilibili.com/read/cv20881630/
免费离线语音识别神器whisper安装教程

补充说明:上图中CUDA 11.6和CUDA 11.7都是gpu版本的软件,我一开始下载的也是gpu版本的,但是因为我的电脑显卡的显存比较低,运行whisper模型的时候大模型运行不了。下图是whisper官方给出的运行模型所需显存。

我的显存是4GB,一旦使用whisper运行small模式以上的模型就会报显存不足的错误。为了能运行更大的模型以保证语音识别较高的准确率,我最终只能选择安装cpu版本。 作者:1590856 https://www.bilibili.com/read/cv20881630/ 出处:bilibili

当然还有其他的模型可供选择,可以在命令行运行whisper --help查看帮助。有以下11种模式可供选择。

[--model {tiny.en,tiny,base.en,base,small.en,small,medium.en,medium,large-v1,large-v2,large}] 作者:1590856 https://www.bilibili.com/read/cv20881630/ 出处:bilibili

https://blog.csdn.net/nikolay/article/details/128951413?share_token=92623f2c-9ed4-483e-9c79-8fcf83f08221
使用openai-whisper 语音转文字

使用CUDA
执行如下指令,安装带cuda 的pytorch

pip uninstall torch
pip cache purge
pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu116
--device cuda 使用device参数 指定 cuda

whisper 屋顶.mp3 --language zh --model small --device cuda --initial_prompt "以下是普通话的句子。"

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/432974.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Typora 无法导出 pdf 问题的解决

目录 问题描述 解决困难 解决方法 问题描述 Windows 下&#xff0c;以前&#xff08;Windows 11&#xff09; Typora 可以顺利较快地由 .md 导出 .pdf 文件&#xff0c;此功能当然非常实用与重要。 然而&#xff0c;有一次电脑因故重装了系统&#xff08;刷机&#xff09;…

【C++】STL和vector容器

STL和vector容器 基本概念六大组件容器算法迭代器容器算法迭代器 vector容器基本概念vector构造函数赋值vector的容量和大小vector插入与删除vector存取数据函数原型 vector互换容器vector预留空间vector容器嵌套容器 基本概念 长久以来&#xff0c;软件届一直希望建立一种可重…

Facebook 广告帐户:多账号运营如何防止封号?

Facebook目前是全球最受欢迎的社交媒体平台之一&#xff0c;拥有超过27亿活跃用户。因此&#xff0c;它已成为个人和企业向全球受众宣传其产品和服务的重要平台。 然而&#xff0c;Facebook 制定了广告商必须遵守的严格政策和准则&#xff0c;以确保其广告的质量和相关性&…

七分钟交友匿名聊天室源码

多人在线聊天交友工具&#xff0c;无需注册即可畅所欲言&#xff01;你也可以放心讲述自己的故事&#xff0c;说出自己的秘密&#xff0c;因为谁也不知道对方是谁。 运行说明&#xff1a; 安装依赖项&#xff1a;npm install 启动&#xff1a;node app.js 运行&#xff1a;直接…

上位机图像处理和嵌入式模块部署(qt插件的使用)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 一个软件一般有很多的功能&#xff0c;但是主流程只有一个。但在软件开发的过程当中&#xff0c;一般来说功能是需要不断添加的&#xff0c;但是主…

NiuShop开源商城系统 SQL注入漏洞复现

0x01 产品简介 Niushop商城系统,是由山西牛酷信息科技有限公司完全自主设计、研发的一套PHP的开源电商系统。Niushop商城系统为团队十年电商开发经验汇集巨献!是全国首创集 "B2B2C多用户商城 + 微信微分销 + 电商平台招商运营 + iOS 、Android多平台客户端" 的PHP开…

微软 AD |域控制器 | 组件 | 域服务 | 对象解析

介绍 Active Directory&#xff08;AD&#xff09;&#xff0c;是微软的目录服务&#xff0c;提供强大的功能和管理体系&#xff0c;用于组织管理和安全存储网络上的资源和用户、计算机、服务对象等信息。 AD 功能&#xff1a; 身份验证和访问控制&#xff1a; 提供集中式的身…

【Uni-App】Vuex在vue3版本中的使用与持久化

Vuex是什么 Vuex 是一个专为 Vue.js 应用程序开发的状态管理模式。它采用集中式存储管理应用的所有组件的状态&#xff0c;并以相应的规则保证状态以一种可预测的方式发生变化。 简而言之就是用来存数据&#xff0c;可以有效减少使用组件传参出现的问题。 基本元素&#xff1a;…

java servlet运输公司管理系统Myeclipse开发mysql数据库web结构java编程计算机网页项目

一、源码特点 java Web运输公司管理系统是一套完善的java web信息管理系统 serlvetdaobean mvc 模式开发 &#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主 要采用B/S模式开发。开发环境为TOMCAT7.0,Myeclipse8.5…

数据库设计的一些原则

文章目录 数据库设计原则表之间的关系一对一关系&#xff08;了解&#xff09;一对多&#xff08;多对一&#xff09;多对多联合主键和复合主键 数据库设计准则-范式1、函数依赖2、完全函数依赖3、部分函数依赖4、传递函数依赖5、码 第一范式第二范式第三范式第三范式 数据库设…

微服务-微服务Alibaba-Nacos注册中心实现

1. 系统架构的演变 俗话说&#xff0c; 没有最好的架构&#xff0c;只有最合适的架构。 微服务架构也是随着信息产业的发展而出现的最有普 遍适用性的一套架构模式。通常来说&#xff0c;我们认为架构发展历史经历了这样一个过程&#xff1a;单体架构——> 垂直架构 ——&g…

路飞项目--03

总页面 二次封装Response模块 # drf提供的Response&#xff0c;前端想接收到的格式 {code:xx,msg:xx} 后端返回&#xff0c;前端收到&#xff1a; APIResponse(tokneasdfa.asdfas.asdf)---->{code:100,msg:成功,token:asdfa.asdfas.asdf} APIResponse(code101,msg用户不存…