RabbitMQ问题总结


:::info
使用场景

  • 异步发送(验证码、短信、邮件。。。)
  • MySQL 和 Redis、ES 之间的数据同步
  • 分布式事务
  • 削峰填谷

  • :::

如何保证消息不丢失


上图是消息正常发送的一个过程,那在哪个环节中消息容易丢失?在哪一个环节都可能丢失

  • 生产者宕机,消息就可能到达不了交换机,或者消息未到达队列
  • 消息发送成功后,消费者还没有消费前,MQ 宕机,就有可能导致队列中消息丢失
  • 消费者宕机,导致消费者未接收到消息

生产者,队列,消费者三个层面都有可能导致消息丢失,所以保证消息不丢失需要从这三个层面解决

生产者确认机制

RabbitMQ 提供了 publisher confirm 机制来避免消息发送到 MQ 过程中丢失。消息发送到 MQ 后,会返回一个结果给发送者,表示消息是否处理成功。

如果消息发送成功,就会返回 publish-confirm ack,如果发送到交换机失败,就会返回 publish-confirm nack,如果发送到队列失败,就会返回 publish-return ack。
消息失败之后如何处理呢?

  • 回调方法即时重发
  • 记录日志
  • 保存到数据库然后定时重发,成功发送后即刻删除表中的数据

消息持久化

MQ 默认是内存存储消息,开启持久化功能可以确保缓存在 MQ 中的消息不丢失。

  1. 交换机持久化
@Bean
public DirectExchange simpleExchange(){// 三个参数:交换机名称、是否持久化、当没有queue与其绑定时是否自动删除return new DirectExchange("simple.direct",true,false);
}
  1. 队列持久化
@Bean
public Queue simpleQueue(){// 使用QueueBuilder构建队列,durable就是持久的return QueueBuilder.durable("simple.queue").build();
}
  1. 消息持久化,SpringAMQP 中的消息默认是持久的,可以通过 MessageProperties 中的 DeliveryMode 来指定
Message msg = MessageBuilder.withBody(message.getBytes(StandardCharsets.UTF_8)) // 消息体.setDeliveryMode(MessageDeliveryMode.PERSISTENE) // 持久化.build();

消费者确认

RabbitMQ 支持消费者确认机制,即消费者处理消息后可以向 MQ 发送 ack 回执,MQ 收到 ack 回执后才会删除消息。
SpringAMQP 则允许配置三种确认模式:

  • manual:手动 ack,需要在业务代码结束后,调用 api 发送 ack。
  • auto:自动 ack,由 spring 监测 listener 代码是否出现异常,没有异常则返回 ack;抛出异常则返回 nack。
  • none:关闭 ack,MQ 假定消费者获取消息后会成功处理,因此消息投递后立即被删除

我们可以利用 Spring 的 retry 机制,在消费者出现异常时利用本地重试,设置重试次数,当次数达到了以后,如果消息依然失败,将消息投递到异常交换机,交由人工处理。

RabbitMQ 如何保证消息不丢失?

  • 开启生产者确认机制,确保生产者的消息能到达队列
  • 开启持久化功能,确保消息未消费前在队列中不会丢失
  • 开启消费者确认机制为 auto,由 spring 确认消息处理成功后完成 ack
  • 开启消费者失败重试机制,多次重试失败后将消息投递到异常交换机,交由人工处理

消息的重复消费问题如何解决的

为什么会出现重复消费的问题?

  • 网络抖动
  • 消费者挂了


消费者已经处理完消息,还没来得及给 MQ 发送确认,这时网络发生了抖动或者消费者挂了,等网络恢复之后或者消费者重启之后,因为队列没有收到确认,所以消息还在 MQ 中,因为我们设置了重试机制,消费者就会重新消费消息。
解决方案

  • 每条消息设置一个唯一的标识 id,消费者收到消息后去业务 id 是否存在
  • 幂等方案:分布式锁、数据库锁(悲观锁、乐观锁)

RabbitMQ 死信交换机(RabbitMQ 延迟队列有了解过嘛)

  • 延迟队列:进入队列的消息会被延迟消费的队列
  • 场景:超时订单、限时优惠、定时发布

延迟队列=死信交换机+TTL(消息的生存时间)

死信交换机

当一个队列中的消息满足下列情况之一时,可以成为死信(dead letter):

  • 消费者使用 basic.reject 或 basic.nack 声明消费失败,并且消息的 requeue 参数为 false
  • 消息是一个过期消息,超时无人消费
  • 要投递的队列消息堆积满了,最早的消息可能成为死信

如果该队列配置了 dead-letter-exchange 属性,指定了一个交换机,那么队列中的死信就会投递到这个交换机中,而这个交换机称为死信交换机(Dead Letter Exchange,简称 DLX)。

@Bean
public Queue ttlQueue(){return QueueBuilder.durable("simple.queue")  // 指定队列名称,并持久化.ttl(10000)  // 设置队列的超时时间,10秒.deadLetterExchange("dl.direct")  // 指定死信交换机.build();
}

TTL

TTL,也就是 Time-To-Live。如果一个队列中的消息 TTL 结束仍未消费,则会变成死信,ttl 超时分为两种情况:

  • 消息所在的队列设置了存活时间
  • 消息本身设置了存活时间


哪个 ttl 短以哪个为准。

// 创建消息
Message message = MessageBuilder.withBody("hello, ttl message".getBytes(StandardCharsets.UTF_8)).setExpiration("5000").build();
// 消息ID,需要封装到CorrelationData中
CorrelationData correlationData = new correlationData(UUID.randomUUID().toString());
// 发送消息
rabbitTemplate.convertAndSend("ttl.direct","ttl",message,correlationData);

延迟队列插件

实现延迟队列,还可以使用官方提供的插件。DelayExchange 插件,需要安装在 RabbitMQ 中
RabbitMQ 有一个官方的插件社区,地址为:https://www.rabbitmq.com/community-plugins.htmlimage.png

@RabbitListener(bindings = @QueueBinding(value = @Queue(name ="delay.queue", durable="true"),exchange = @Exchange(name="delay.direct",delayed="true")key="delay"
))
public void listenDelayedQueue(String msg){log.info("接收到 delay.queue的延迟消息:{}",msg);
}
// 创建消息
Message message = MessageBuilder.withBody("hello,delayed message".getBytes(StandardCharsets.UTF_8)).setHeader("x-delay",10000).build();
// 消息ID,需要封装到CorrelationData中
CorrelationData correlationData = new CorrelationData(UUID.randomUUID().toString());
// 发送消息
rabbitTemplate.convertAndSend("delay.direct","delay",message,correlationData);

RabbitMQ 死信交换机?(RabbitMQ 延迟队列有了解过嘛)

  • 我们当时一个业务使用到了延迟队列(超时订单、限时优惠、定时发布…)
  • 其中延迟队列就用到了死信交换机和 TTL 实现的
  • 消息超时未消费就会变成死信(死信的其他情况:拒绝被消费,队列满了)

延迟队列插件实现延迟队列 DelayExchange

  • 声明一个交换机,添加 delayed 属性为 true
  • 发送消息时,添加 x-delay 头,值为超时时间

如果有 100 万消息堆积在 MQ,如何解决(消息堆积怎么解决)

当生产者发送消息的速度超过了消费者处理消息的速度,就会导致队列中的消息堆积,直到队列存储消息达到上限。之后发送的消息就会成为死信,可能会被丢弃,这就是消息堆积问题。
解决消息堆积有三种思路:

  • 增加更多消费者,提高消费速度
  • 在消费者内开启线程池加快消息处理速度
  • 扩大队列容积,提高堆积上限

惰性队列

惰性队列的特征如下:

  • 接收到消息后直接存入磁盘而非内存
  • 消费者要消费消息时才会从磁盘中读取并加载到内存
  • 支持百万条的消息存储
@Bean
public Queue lazyQueue(){return QueueBuilder.durable("lazy.queue").lazy()  // 开启x-queue-mode为lazy.build();
}
// 或者
@RabbitListener(queuesToDeclare = @Queue(name="lazy.queue",durable="true",arguments=@Argument(name="x-queue-mode",value="lazy")
))
public void listenLazyQueue(String msg){log.info("接收到lazy.queue的消息:{}",msg);
}

如果有 100 万消息堆积在 MQ,如何解决?
解决消息堆积有三种思路:

  • 增加更多的消费者,提高消费速度
  • 在消费者内开启线程池加快消息处理速度
  • 扩大队列容积,提高堆积上限,采用惰性队列
    • 在声明队列的时候可以设置属性 x-queue-mode 为 lazy,即为惰性队列
    • 基于磁盘存储,消息上限高
    • 性能比较稳定,但基于磁盘存储,受限与磁盘 IO,时效性会降低

RabbitMQ 高可用机制

  • 在生产环境下,使用集群来保证高可用性
  • 普通集群、镜像集群、仲裁队列

普通集群

普通集群,或者叫标准集群(classic cluster),具备下列特征:

  • 会在集群的各个节点共享部分数据,包括:交换机、队列元信息。不包含队列中的消息。
  • 当访问集群某节点时,如果队列不在该节点,会从数据所在节点传递到当前节点并返回。
  • 队列所在节点宕机,队列中的消息就会丢失。

镜像集群

镜像集群:本质是主从模式,具备下面的特征:

  • 交换机、队列、队列中的消息会在各个 mq 的镜像节点之间同步备份。
  • 创建队列的节点被称为该队列的主节点,备份到其他节点叫做该队列的镜像节点。
  • 一个队列的主节点可能是另一个队列的镜像节点。
  • 所有操作都是在主节点完成,然后同步给镜像节点。
  • 主宕机后,镜像节点会替代成新的主。

仲裁队列

仲裁队列:仲裁队列是 3.8 版本以后才有的新功能,用来替代镜像队列,具备下列特征:

  • 与镜像队列一样,都是主从模式,支持主从数据同步
  • 使用非常简单,没有复杂的配置
  • 主从同步基于 Raft 协议,强一致
@Bean
public Queue quorumQueue(){return QueueBuilder.durable("quorum.queue")  // 持久化.quorum()  //仲裁队列.build();
}

RabbitMQ 的高可用机制有了解过嘛

  • 在生产环境下,我们当时采用的镜像模式搭建的集群,共有 3 个节点。
  • 镜像队列结构是一主多从(从就是镜像),所有操作都是主节点完成,然后同步给镜像节点。
  • 主节点宕机后,镜像节点会替代成新的主(如果在主从同步完成前,主就已经宕机,可能出现数据丢失)

出现数据丢失怎么解决?
我们可以采用仲裁队列,与镜像队列一样,都是主从模式,支持主从数据同步,主从同步基于 Raft 协议,强一致。并且使用起来也非常简单,不需要额外的配置,在声明队列的时候只要指定这个是仲裁队列即可。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/433351.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C#用 DateAndTime.DateAdd方法和DateTime.Add(TimeSpan) 方法分别添加一段时间间隔

目录 一、基本方法 1.用 DateAndTime.DateAdd方法添加一段时间间隔 2.用DateTime.Add方法添加一段时间间隔 二、实例 1.实例1:用 DateAndTime.DateAdd方法 2.实例2:用DateTime.Add方法 一、基本方法 1.用 DateAndTime.DateAdd方法添加一段时间间隔…

【STM32】STM32学习笔记-BKP备份寄存器和RTC实时时钟(42)

00. 目录 文章目录 00. 目录01. BKP简介02. BKP特性03. BKP基本结构04. RTC简介05. RTC主要特性06. RTC框图07. RTC基本结构08. 硬件电路09. RTC操作注意事项10. 附录 01. BKP简介 备份寄存器是42个16位的寄存器,可用来存储84个字节的用户应用程序数据。他们处在备…

物联网IOT视频设备如何快速对接阿里云生活物联网(Link Visual)并成功上云?

原文永久更新地址:https://www.yundashi168.com/472.html 文章来源:猿视野 如果有图片看不清楚,加载不出来,请阅读原文。 什么是Link Visual、 Link Visual是生活物联网平台针对视频产品推出的增值服务,提供视频数据上…

操作系统(4)---虚拟机

虚拟机又叫虚拟机管理程序或者虚拟机监控程序(Virtual Machine Monitor/Hypervisor,VMM),使用虚拟化技术,将一台物理机器虚拟化为多台虚拟机器 (Virtual Machine,VM),每个虚拟机器都可以独立运行一个操作系…

2024 高级前端面试题之 CSS 「精选篇」

该内容主要整理关于 CSS 的相关面试题,其他内容面试题请移步至 「最新最全的前端面试题集锦」 查看。 CSS模块精选篇 1. 盒模型2. BFC3. 层叠上下文4. 居中布局5. 选择器权重计算方式6. 清除浮动7. link 与 import 的区别8. CSS3的新特性9. CSS动画和过渡10. 有哪些…

跨境防诈指南 | 了解美国电商持续遭遇的“超额支付”欺诈

目录 常见的“超额支付”欺诈类型 假支票诈骗 虚假信用卡欺诈 基于交易的洗钱诈骗 防止“超额支付”欺诈 增强交易安全保障 加强异常交易识别 借助反欺诈技术识别 加强团队欺诈培训 美国商业委员会的统计报告显示,2023年年1至6月,联邦贸易委员会&#xf…

【小白教程】幻兽帕鲁服务器一键搭建 | 支持更新 | 自定义配置

幻兽帕鲁刚上线就百万在线人数,官方服务器的又经常不稳定,所以这里给大家带来最快捷的搭建教程,废话不多说直接开始。 步骤一:准备服务器 服务器建议 Linux 系统,资源占用低,而且一键脚本只需要一条命令&am…

【unity小技巧】受伤屏幕闪红、死亡动画、死亡黑屏效果

文章目录 玩家受伤配置人物死亡动画死亡黑屏效果完结 玩家受伤 玩家受伤,屏幕显示血框UI,然后逐渐消失 //玩家受击时调用 void GetHit(){StartCoroutine(BloodyScreenEffect()); }private IEnumerator BloodyScreenEffect() {// 检查bloodyScreen是否处…

虚拟机内使用 archinstall 安装 arch linux 2024.01.01

文章目录 [toc]前言碎语安装 arch linuxArchinstall languageMirrorsLocalesDisk configurationBootloaderSwapHostnameRoot passwordUser accountProfileAudioKernelsAdditional packagesNetwork configurationTimezoneAutomatic time syncOptional repositoriesInstall 进入桌…

微软 Power Apps Canvas App 画布应用将上传的附件转化为base64编码操作

微软 Power Apps Canvas App 画布应用将上传的附件结合Power Automate转化为base64编码操作 在使用canvas app的过程中,我们有时需要将上传的文件转换为base64存入数据库或者,调用外部接口传参,那么看下如何将文件转化为base64编码格式。 首先…

2024新版68套Axure RP大数据可视化大屏模板及通用组件+PSD源文件

Axure RP数据可视化大屏模板及通用组件库2024新版重新制作了这套新的数据可视化大屏模板及通用组件库V2版。新版本相比于V1版内容更加丰富和全面,但依然秉承“敏捷易用”的制作理念,这套作品也同样延续着我们对细节的完美追求,整个设计制作过…

专业130+总分420+上海交通大学819考研经验分享上海交大电子信息与通信工程

今年专业课819信号系统与信息处理(ss和dsp)130,总分420,如愿梦圆交大,以下总结了自己这一年专业课,基础课复习经历,希望对大家复习有所帮助。专业课819信号系统与信号处理: 交大819…