​ElasticSearch

目录

简介

基本概念

倒排索引

FST


简介

ES是一个基于lucene构建的,分布式的,RESTful的开源全文搜索引擎。支持对各种类型的数据的索引;搜索速度快,可以提供实时的搜索服务;便于水平扩展,每秒可以处理 PB 级海量数据

  • E:EalsticSearch 搜索和分析的功能
  • L:Logstach 搜集数据的功能,类似于flume(使用方法几乎跟flume一模一样),是日志收集系统
  • K:Kibana 数据可视化(分析),可以用图表的方式来去展示,文不如表,表不如图,是数据可视化平台

基本概念

ES 和传统数据库相比对应关系如下:

关系数据库数据库表结构
ES索引(index)类型(type)映射(Mappering)文档(documents)字段(field)
  • 索引:一个 索引 就是一个拥有几分相似特征的文档的集合。ES 将数据存储于一个或多个索引中,索引 就相当于 SQL 中的一个数据库
  • 类型:类型是索引内部的逻辑分区(category/partition),然而其意义完全取决于用户需求。因此,一个索引内部可定义一个或多个类型(type)。一般来说,类型就是为那些拥有相同的域的文档做的预定义。类比传统的关系型数据库领域来说,类型 相当于 表,7.x 版本默认使用 _doc 作为 type 。
  • 文档:文档是 Lucene 索引和搜索的 原子单位,它是包含了一个或多个域的容器,基于 Json 格式进行表示。文档有一个或多个域组成,每个域拥有一个名字及一个或多个值,有多个值的域通常被称为 多值域,每个文档可以存储不同的域集,但同一类型下的文档至应该有某种程度上的相似之处。相当于 mysql 表中的 row 。
  • 字段:Field 是相当于数据库中的 Column
  • 映射:Mapping 是定义文档及其包含的字段如何存储和索引的过程。Mapping 是 ES 中的一个很重要的内容,它类似于传统关系型数据中 table 的 schema,用于定义一个索引(index)的某个类型(type)的数据结构。

  • 集群(cluster)& 节点(Node):Elasticsearch 本质上是一个分布式数据库,允许多台服务器协同工作,每台服务器可以运行多个 Elasticsearch 实例。单个 Elasticsearch 实例称为一个节点(Node),一组节点构成一个集群(Cluster)。
  • 分片(shard):一个 索引 可以存储超出单个结点硬件限制的大量数据。比如,一个具有 10亿文档的索引占据 1TB 的磁盘空间,而任一节点都没有这样大的磁盘空间;或者单个节点处理搜索请求,响应太慢。为了解决这个问题,Elasticsearch 提供了将索引划分成多份的能力,这些份就叫做分片。当你创建一个索引的时候,你可以指定你想要的分片的数量。每个分片本身也是一个功能完善并且独立的 索引,这个 索引 可以被放置到集群中的任何节点上。
  • 副本(Replica):副本是一个分片的精确复制,每个分片可以有零个或多个副本。提高系统的容错性,当某个节点某个分片损坏或丢失时,可以从副本中恢复;提高 ES 查询效率,ES 会自动对搜索请求进行负载均衡。

倒排索引

es之所以那么快,查询起来效率这么高,主要还是es插入数据的索引机制。

我们知道 mysql 查询这么快,是由于建立了 B+树 ,内部建立了树状的索引,这种称为正排索引。

用B+树作为索引行不行呢?全文索引就是需要支持对大文本进行索引的,从空间上来说 B+ 树不适合作为全文索引,同时 B+ 树因为每次搜索都是从根节点开始往下搜索,所以会遵循最左匹配原则,而我们使用全文搜索时,往往不会遵循最左匹配原则,所以可能会导致索引失效。这时候倒排索引就派上用场了。

es 建立的索引称为倒排索引,在数据插入的时候,就对数据进行统计,将每一个 document 经过分词,分词之后统计出现的频数,这样查询的时候就可以根据查询的词快速定位到某一个数目,同时由于创建的时候统计的频数,可以对具体内容进行排序,可以类比于百度的搜索排名

倒排索引的结构主要包括了两大部分一个是Term Dictionary(单词词典),另一个是Posting List(倒排列表)。Term Dictionary(单词词典)记录了所用文档的单词以及单词和倒排列表的关系。Posting List(倒排列表)则是记录了term在文档中的位置以及其他信息,主要包括文档ID,词频(term在文档中出现的次数,用来计算相关性评分),位置以及偏移(实现搜索高亮)。

FST

如上文所述,在进行全文检索的时候,通过倒排索引中term与docId的关联关系获取到原始数据。但是这里有一个问题,ES底层依赖Lucene实现倒排索引的,因此在进行数据写入的时候,Lucene会为原始数据中的每个term生成对应的倒排索引,因此造成的结果就是倒排索引的数据量就会很大。而倒排索引对应的倒排表文件是存储在硬盘上的。如果每次查询都直接去磁盘中读取倒排索引数据,在通过获取的docId再去查询原始数据的话,肯定会造成多次的磁盘IO,严重影响全文检索的效率。因此我们需要一种方式可以快速定位到倒排索引中的term。

大家想想使用什么方式比较好呢?可以考虑HashMap, TRIE, Binary Search Tree或者Tenary Search Tree等数据结构,实际上Lucene实际是使用了FST(Finite State Transducer)有限状态传感器来实现二级索引的设计,它其实就是一种有限状态机。

我们先来看下 trie树的结构,在Lucene中是这样做的,将倒排索引中具有公共前缀的term组成一个block,如下图所示的cool以及copy,它们拥有co的公共前缀,按照类似前缀树的逻辑来构成trie树,对应节点中携带block的首地址。我们来分析下trie树相比hashmap有什么优点?hashmap实现的是精准查找,但是trie树不仅可以实现精准查找,另外由于其公共前缀的特性还可以实现模糊查找。那我们再看trie树有什么地方可以再进行优化的地方?

 如上如所示,term中的school以及cool的后面字符是一致的,因此我们可以通过将原先的trie树中的后缀字符进行合并来进一步的压缩空间。优化后的trie树就是FST

因此通过建立FST这个二级索引,可以实现倒排索引的快速定位,不需要经过多次的磁盘IO,搜索效率大大提高了。不过需要注意的是FST是存储在堆内存中的,而且是常驻内存,大概占用50%-70%的堆内存,因此这里也是我们在生产中可以进行堆内存优化的地方。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/434304.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Apache Shiro <= 1.2.4反序列化漏洞攻击 CVE-2016-4437 已亲自复现

Apache Shiro < 1.2.4反序列化漏洞攻击 CVE-2016-4437 已亲自复现 漏洞名称漏洞描述影响版本 漏洞复现环境搭建漏洞利用 修复建议总结 漏洞名称 漏洞描述 在 1.2.5 之前的 Apache Shiro 中&#xff0c;当未为“记住我”功能配置密钥时&#xff0c;远程攻击者可以通过未指定…

观测器与卡尔曼滤波器的状态估计对比

在实时控制系统和信号处理中&#xff0c;观测器和卡尔曼滤波器是两个常用于状态估计的工具。本文将通过 Matlab 演示这两者在一维运动系统中的应用&#xff0c;并深入探讨它们的概念、核心点、异同以及本质。 观测器与卡尔曼滤波器的概念 观测器 观测器是一种用于估计系统状…

Linux常见指令汇总

目录 pwd√ ls√ cd√ 对文件的理解√ which√ alias√ touch√ linux系统目录结构√ mkdir / tree √ rmdir / rm √ man√ nano√ cp√ mv√ cat√ echo√ linux设计理念和三种重定向总结√ more/less√ head/tail√ wc√ uniq√ date / cal√ find√…

【大数据】详解 Flink 中的 WaterMark

详解 Flink 中的 WaterMark 1.基础概念1.1 流处理1.2 乱序1.3 窗口及其生命周期1.4 Keyed vs Non-Keyed1.5 Flink 中的时间 2.Watermark2.1 案例一2.2 案例二2.3 如何设置最大乱序时间2.4 延迟数据重定向 1.基础概念 1.1 流处理 流处理&#xff0c;最本质的是在处理数据的时候…

uniapp组件库fullScreen 压窗屏的适用方法

目录 #平台差异说明 #基本使用 #触发压窗屏 #定义压窗屏内容 #注意事项 所谓压窗屏&#xff0c;是指遮罩能盖住原生导航栏和底部tabbar栏的弹窗&#xff0c;一般用于在APP端弹出升级应用弹框&#xff0c;或者其他需要增强型弹窗的场景。 警告 由于uni-app的Bug&#xff0…

Chapter 8 - 2. Congestion Management in TCP Storage Networks

How iSCSI and NVMe/TCP Exchange Data The following are the high-level steps for the end devices to exchange data using iSCSI and NVMe/TCP protocols over a TCP/IP network (Figure 8-1). 以下是终端设备通过 TCP/IP 网络使用 iSCSI 和 NVMe/TCP 协议交换数据的高级…

记录 | ubuntu安装花生壳

一、到花生壳官网下载linux版本的花生壳 下载地址&#xff1a;花生壳客户端官方下载 - 贝锐花生壳官网 1.进入文件夹 dpkg -i phddns_5_1_amd64.deb // 安装花生壳&#xff0c;安装自己的版本号dpkg -r phddns // 卸载花生壳 2.登录花生壳管理网站 b.oray.com 在Ubuntu中…

机器学习---无偏估计

1. 如何理解无偏估计 无偏估计&#xff1a;就是我认为所有样本出现的概率⼀样。 假如有N种样本我们认为所有样本出现概率都是 1/N。然后根据这个来计算数学期望。此时的数学期望就是我们平常讲 的平均值。数学期望本质就 是平均值。 2. 无偏估计为何叫做“无偏”&#xff1…

Unity 代理模式(实例详解)

文章目录 实例1&#xff1a;资源加载代理&#xff08;Asset Loading Proxy&#xff09;实例2&#xff1a;网络请求代理&#xff08;Network Request Proxy&#xff09;实例3&#xff1a;性能优化代理&#xff08;Performance Optimization Proxy&#xff09;实例4&#xff1a;权…

Qt 基于海康相机 的视频标绘

需求&#xff1a; 基于 视频 进行 标注&#xff0c;从而进行测量。 曾经搞在线教育时&#xff0c;尝试在视频上进行文字或者图形的绘制&#xff0c;但是发现利用Qt widget 传sdk 句柄的方式&#xff0c;只能使用窗口叠加的方式&#xff08;Qt 基于海康相机的视频绘图_海康相…

【常用工具】7-Zip 解/压缩软件——基本使用方法

在实际日常工作或项目中&#xff0c;经常会遇到需要在window操作系统上压缩文件&#xff0c;在Linux操作系统上解压缩的场景&#xff0c;一款实用的压缩软件迫在眉睫&#xff0c;经过实际使用总结&#xff0c;7-Zip可以很好的解决很多压缩和解压缩问题&#xff0c;其基本使用方…

APP测试要点有哪些?本文已经给你梳理好了!

我们日常购物、旅游、支付等活动都离不开手机&#xff0c;由此衍生了很多APP。 比如每天使用频率非常高的微信、支付宝、微博、抖音、王者荣耀等等。 APP测试主要进行功能测试、性能测试、自动化测试、安全性测试、兼容性测试、专项测试。 01 APP测试流程 APP测试流程与web…