经典目标检测YOLO系列(三)YOLOV3的复现(1)总体网络架构及前向处理过程

经典目标检测YOLO系列(三)YOLOV3的复现(1)总体网络架构及前向处理过程

和之前实现的YOLOv2一样,根据《YOLO目标检测》(ISBN:9787115627094)一书,在不脱离YOLOv3的大部分核心理念的前提下,重构一款较新的YOLOv3检测器,来对YOLOv3有更加深刻的认识。

书中源码连接: RT-ODLab: YOLO Tutorial

1、YOLOv3网络架构

1.1 DarkNet53主干网络

  • 这里使用原版YOLOv3中提出的DarkNet53作为主干网络(backbone)。这里,作者还提供了DarkNetTiny版本的网络结构。
  • 可以在https://github.com/yjh0410/image_classification_pytorch中,手动下载作者提供的在ImageNet数据集的预训练权重。
    • 在这里插入图片描述

1.1.1 DarkNet53的残差模块

  • DarkNet53主要就是由一系列残差模块组成的,组成为【1、2、8、8、4】。

    在这里插入图片描述

  • 首先,我们搭建了由1×1卷积层和3×3卷积层组成的Bottleneck模块,其中shortcut参数用于决定是否使用残差连接。

# RT-ODLab/models/detectors/yolov3/yolov3_basic.py
# BottleNeck
class Bottleneck(nn.Module):def __init__(self,in_dim,out_dim,expand_ratio=0.5,shortcut=False,depthwise=False,act_type='silu',norm_type='BN'):super(Bottleneck, self).__init__()inter_dim = int(out_dim * expand_ratio)  # hidden channels            self.cv1 = Conv(in_dim, inter_dim, k=1, norm_type=norm_type, act_type=act_type)self.cv2 = Conv(inter_dim, out_dim, k=3, p=1, norm_type=norm_type, act_type=act_type, depthwise=depthwise)self.shortcut = shortcut and in_dim == out_dimdef forward(self, x):h = self.cv2(self.cv1(x))return x + h if self.shortcut else h
  • 然后,我们构建ResBlock类,通过调整nblocks决定使用多少个Bottleneck模块。
# RT-ODLab/models/detectors/yolov3/yolov3_basic.py
# ResBlock
class ResBlock(nn.Module):def __init__(self,in_dim,out_dim,nblocks=1,act_type='silu',norm_type='BN'):super(ResBlock, self).__init__()assert in_dim == out_dimself.m = nn.Sequential(*[Bottleneck(in_dim, out_dim, expand_ratio=0.5, shortcut=True,norm_type=norm_type, act_type=act_type)for _ in range(nblocks)])def forward(self, x):return self.m(x)

1.1.2 构建DarkNet53网络

  • 使用经典的【1、2、8、8、4】结构堆叠残差模块,层与层之间的降采样操作由stride=2的卷积来实现。
  • 这里使用SiLU替代LeakyReLU激活函数,SiLU是Sigmoid和ReLU的改进版。SiLU具备无上界有下界、平滑、非单调的特性。
  • DarkNet53返回C3、C4和C5三个尺度的特征图,目的是做FPN以及多级检测。
  • 源码中,作者还提供了一个DarkNetTiny版本的网络结构。
  • 完成yolov3_backbone的搭建后,可以在yolov3.py文件中,通过build_backbone函数进行调用。
# RT-ODLab/models/detectors/yolov3/yolov3_backbone.py
import torch
import torch.nn as nntry:from .yolov3_basic import Conv, ResBlock
except:from yolov3_basic import Conv, ResBlockmodel_urls = {"darknet_tiny": "https://github.com/yjh0410/image_classification_pytorch/releases/download/weight/darknet_tiny.pth","darknet53": "https://github.com/yjh0410/image_classification_pytorch/releases/download/weight/darknet53_silu.pth"
}# --------------------- DarkNet-53 -----------------------
## DarkNet-53
class DarkNet53(nn.Module):def __init__(self, act_type='silu', norm_type='BN'):super(DarkNet53, self).__init__()self.feat_dims = [256, 512, 1024]# P1self.layer_1 = nn.Sequential(Conv(3, 32, k=3, p=1, act_type=act_type, norm_type=norm_type),Conv(32, 64, k=3, p=1, s=2, act_type=act_type, norm_type=norm_type),ResBlock(64, 64, nblocks=1, act_type=act_type, norm_type=norm_type))# P2self.layer_2 = nn.Sequential(Conv(64, 128, k=3, p=1, s=2, act_type=act_type, norm_type=norm_type),ResBlock(128, 128, nblocks=2, act_type=act_type, norm_type=norm_type))# P3self.layer_3 = nn.Sequential(Conv(128, 256, k=3, p=1, s=2, act_type=act_type, norm_type=norm_type),ResBlock(256, 256, nblocks=8, act_type=act_type, norm_type=norm_type))# P4self.layer_4 = nn.Sequential(Conv(256, 512, k=3, p=1, s=2, act_type=act_type, norm_type=norm_type),ResBlock(512, 512, nblocks=8, act_type=act_type, norm_type=norm_type))# P5self.layer_5 = nn.Sequential(Conv(512, 1024, k=3, p=1, s=2, act_type=act_type, norm_type=norm_type),ResBlock(1024, 1024, nblocks=4, act_type=act_type, norm_type=norm_type))def forward(self, x):c1 = self.layer_1(x)c2 = self.layer_2(c1)c3 = self.layer_3(c2)c4 = self.layer_4(c3)c5 = self.layer_5(c4)outputs = [c3, c4, c5]return outputs## DarkNet-Tiny
class DarkNetTiny(nn.Module):def __init__(self, act_type='silu', norm_type='BN'):super(DarkNetTiny, self).__init__()self.feat_dims = [64, 128, 256]# stride = 2self.layer_1 = nn.Sequential(Conv(3, 16, k=3, p=1, s=2, act_type=act_type, norm_type=norm_type),ResBlock(16, 16, nblocks=1, act_type=act_type, norm_type=norm_type))# stride = 4self.layer_2 = nn.Sequential(Conv(16, 32, k=3, p=1, s=2, act_type=act_type, norm_type=norm_type),ResBlock(32, 32, nblocks=1, act_type=act_type, norm_type=norm_type))# stride = 8self.layer_3 = nn.Sequential(Conv(32, 64, k=3, p=1, s=2, act_type=act_type, norm_type=norm_type),ResBlock(64, 64, nblocks=3, act_type=act_type, norm_type=norm_type))# stride = 16self.layer_4 = nn.Sequential(Conv(64, 128, k=3, p=1, s=2, act_type=act_type, norm_type=norm_type),ResBlock(128, 128, nblocks=3, act_type=act_type, norm_type=norm_type))# stride = 32self.layer_5 = nn.Sequential(Conv(128, 256, k=3, p=1, s=2, act_type=act_type, norm_type=norm_type),ResBlock(256, 256, nblocks=2, act_type=act_type, norm_type=norm_type))def forward(self, x):c1 = self.layer_1(x)c2 = self.layer_2(c1)c3 = self.layer_3(c2)c4 = self.layer_4(c3)c5 = self.layer_5(c4)outputs = [c3, c4, c5]return outputs# --------------------- Functions -----------------------
def build_backbone(model_name='darknet53', pretrained=False): """Constructs a darknet-53 model.Args:pretrained (bool): If True, returns a model pre-trained on ImageNet"""if model_name == 'darknet53':backbone = DarkNet53(act_type='silu', norm_type='BN')feat_dims = backbone.feat_dimselif model_name == 'darknet_tiny':backbone = DarkNetTiny(act_type='silu', norm_type='BN')feat_dims = backbone.feat_dimsif pretrained:url = model_urls[model_name]if url is not None:print('Loading pretrained weight ...')checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True)# checkpoint state dictcheckpoint_state_dict = checkpoint.pop("model")# model state dictmodel_state_dict = backbone.state_dict()# checkfor k in list(checkpoint_state_dict.keys()):if k in model_state_dict:shape_model = tuple(model_state_dict[k].shape)shape_checkpoint = tuple(checkpoint_state_dict[k].shape)if shape_model != shape_checkpoint:checkpoint_state_dict.pop(k)else:checkpoint_state_dict.pop(k)print(k)backbone.load_state_dict(checkpoint_state_dict)else:print('No backbone pretrained: DarkNet53')        return backbone, feat_dimsif __name__ == '__main__':import timefrom thop import profilemodel, feats = build_backbone(model_name='darknet53', pretrained=True)x = torch.randn(1, 3, 224, 224)t0 = time.time()outputs = model(x)t1 = time.time()print('Time: ', t1 - t0)for out in outputs:print(out.shape)x = torch.randn(1, 3, 224, 224)print('==============================')flops, params = profile(model, inputs=(x, ), verbose=False)print('==============================')print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))print('Params : {:.2f} M'.format(params / 1e6))

1.2 搭建neck网络

1.2.1 添加SPPF模块

  • 原始的YOLOv3中,neck只有特征金字塔,后来又出现了添加了SPP模块的YOLOv3,后续版本也能找到SPP模块,因此我们继续使用之前自己实现的YOLOv1、YOLOv2中的SPPF模块。
  • 代码在RT-ODLab/models/detectors/yolov3/yolov3_neck.py文件中,和之前一致,不在赘述。
  • 对于添加的SPPF模块,仅仅用来处理主干网络输出的C5特征图,这样可以提高网络的感受野。另外,激活函数换为SiLU。

在这里插入图片描述

1.2.2 添加特征金字塔

  • 在YOLOv3特征金字塔的基础上做了一些改进。
    • 去除YOLOv3最后3层单独的3×3卷积,替换为3层1×1卷积
    • 将每个尺度的通道数调整为256,方便后续利用解耦检测头进行检测。

在这里插入图片描述

# RT-ODLab/models/detectors/yolov3/yolov3_fpn.py
import torch
import torch.nn as nn
import torch.nn.functional as Ffrom .yolov3_basic import Conv, ConvBlocks# Yolov3FPN
class Yolov3FPN(nn.Module):def __init__(self,in_dims=[256, 512, 1024],width=1.0,depth=1.0,out_dim=None,act_type='silu',norm_type='BN'):super(Yolov3FPN, self).__init__()self.in_dims = in_dimsself.out_dim = out_dimc3, c4, c5 = in_dims# P5 -> P4self.top_down_layer_1 = ConvBlocks(c5, int(512*width), act_type=act_type, norm_type=norm_type)self.reduce_layer_1 = Conv(int(512*width), int(256*width), k=1, act_type=act_type, norm_type=norm_type)# P4 -> P3self.top_down_layer_2 = ConvBlocks(c4 + int(256*width), int(256*width), act_type=act_type, norm_type=norm_type)self.reduce_layer_2 = Conv(int(256*width), int(128*width), k=1, act_type=act_type, norm_type=norm_type)# P3self.top_down_layer_3 = ConvBlocks(c3 + int(128*width), int(128*width), act_type=act_type, norm_type=norm_type)# output proj layersif out_dim is not None:# output proj layersself.out_layers = nn.ModuleList([Conv(in_dim, out_dim, k=1,norm_type=norm_type, act_type=act_type)for in_dim in [int(128 * width), int(256 * width), int(512 * width)]])self.out_dim = [out_dim] * 3else:self.out_layers = Noneself.out_dim = [int(128 * width), int(256 * width), int(512 * width)]def forward(self, features):c3, c4, c5 = features# p5/32# 1、经过Convolutional Set1得到P5p5 = self.top_down_layer_1(c5)# p4/16# 2、P5先降维,然后进行上采样,拼接后经过Convolutional Set2得到P4p5_up = F.interpolate(self.reduce_layer_1(p5), scale_factor=2.0)p4 = self.top_down_layer_2(torch.cat([c4, p5_up], dim=1))# P3/8# 3、同样,P3先降维,然后进行上采样,拼接后经过Convolutional Set3得到P3p4_up = F.interpolate(self.reduce_layer_2(p4), scale_factor=2.0)p3 = self.top_down_layer_3(torch.cat([c3, p4_up], dim=1))out_feats = [p3, p4, p5]# output proj layersif self.out_layers is not None:# output proj layersout_feats_proj = []# 4、对p3, p4, p5分别调整通道数为256for feat, layer in zip(out_feats, self.out_layers):out_feats_proj.append(layer(feat))return out_feats_projreturn out_featsdef build_fpn(cfg, in_dims, out_dim=None):model = cfg['fpn']# build neckif model == 'yolov3_fpn':fpn_net = Yolov3FPN(in_dims=in_dims,out_dim=out_dim,width=cfg['width'],depth=cfg['depth'],act_type=cfg['fpn_act'],norm_type=cfg['fpn_norm'])return fpn_net

1.3 搭建检测头

  • 官方YOLOv3中的检测头是耦合的,将置信度、类别及边界框由1层1×1卷积在一个特张图上全部预测出来。
  • 我们这里使用两条并行分支,同时去完成分类和定位,继续采用解耦检测头。
  • 尽管不同尺度的解耦检测头的结构相同,但是参数不共享,这一点不同于RetinaNet的检测头。
  • 在这里插入图片描述
# RT-ODLab/models/detectors/yolov3/yolov3_head.py
import torch
import torch.nn as nn
try:from .yolov3_basic import Conv
except:from yolov3_basic import Convclass DecoupledHead(nn.Module):def __init__(self, cfg, in_dim, out_dim, num_classes=80):super().__init__()print('==============================')print('Head: Decoupled Head')self.in_dim = in_dimself.num_cls_head=cfg['num_cls_head']self.num_reg_head=cfg['num_reg_head']self.act_type=cfg['head_act']self.norm_type=cfg['head_norm']# cls headcls_feats = []self.cls_out_dim = max(out_dim, num_classes)for i in range(cfg['num_cls_head']):if i == 0:cls_feats.append(Conv(in_dim, self.cls_out_dim, k=3, p=1, s=1, act_type=self.act_type,norm_type=self.norm_type,depthwise=cfg['head_depthwise']))else:cls_feats.append(Conv(self.cls_out_dim, self.cls_out_dim, k=3, p=1, s=1, act_type=self.act_type,norm_type=self.norm_type,depthwise=cfg['head_depthwise']))# reg headreg_feats = []self.reg_out_dim = max(out_dim, 64)for i in range(cfg['num_reg_head']):if i == 0:reg_feats.append(Conv(in_dim, self.reg_out_dim, k=3, p=1, s=1, act_type=self.act_type,norm_type=self.norm_type,depthwise=cfg['head_depthwise']))else:reg_feats.append(Conv(self.reg_out_dim, self.reg_out_dim, k=3, p=1, s=1, act_type=self.act_type,norm_type=self.norm_type,depthwise=cfg['head_depthwise']))self.cls_feats = nn.Sequential(*cls_feats)self.reg_feats = nn.Sequential(*reg_feats)def forward(self, x):"""in_feats: (Tensor) [B, C, H, W]"""cls_feats = self.cls_feats(x)reg_feats = self.reg_feats(x)return cls_feats, reg_feats# build detection head
def build_head(cfg, in_dim, out_dim, num_classes=80):head = DecoupledHead(cfg, in_dim, out_dim, num_classes) return head
  • 因为需要在三个尺度上都需要检测头,因此使用nn.ModuleList完成。
# RT-ODLab/models/detectors/yolov3/yolov3.py
# YOLOv3
class YOLOv3(nn.Module):def __init__(self,cfg,device,num_classes=20,conf_thresh=0.01,topk=100,nms_thresh=0.5,trainable=False,deploy=False,nms_class_agnostic=False):super(YOLOv3, self).__init__()......# ------------------- Network Structure -------------------## 主干网络self.backbone, feats_dim = build_backbone(cfg['backbone'], trainable&cfg['pretrained'])## 颈部网络: SPP模块self.neck = build_neck(cfg, in_dim=feats_dim[-1], out_dim=feats_dim[-1])feats_dim[-1] = self.neck.out_dim## 颈部网络: 特征金字塔self.fpn = build_fpn(cfg=cfg, in_dims=feats_dim, out_dim=int(256*cfg['width']))self.head_dim = self.fpn.out_dim## 检测头self.non_shared_heads = nn.ModuleList([build_head(cfg, head_dim, head_dim, num_classes) for head_dim in self.head_dim])

1.4 搭建预测层

最后我们搭建每个尺度的预测层。

  • 对于类别预测,我们在解耦检测头的类别分支后接一层1×1卷积,去做分类;
  • 对于边界框预测,我们在解耦检测头的回归分支后接一层1×1卷积,去做定位;
  • 对于置信度预测,我们在解耦检测头的回归分支后接一层1×1卷积,预测边界框的预测框。

在这里插入图片描述

 # RT-ODLab/models/detectors/yolov3/yolov3.py## 预测层self.obj_preds = nn.ModuleList([nn.Conv2d(head.reg_out_dim, 1 * self.num_anchors, kernel_size=1) for head in self.non_shared_heads]) self.cls_preds = nn.ModuleList([nn.Conv2d(head.cls_out_dim, self.num_classes * self.num_anchors, kernel_size=1) for head in self.non_shared_heads]) self.reg_preds = nn.ModuleList([nn.Conv2d(head.reg_out_dim, 4 * self.num_anchors, kernel_size=1) for head in self.non_shared_heads])      

1.5 改进YOLOv3的详细网络图

  • 至此,我们完成了YOLOv3的网络结构的搭建,详解网络图如下:

在这里插入图片描述

2、YOLOv3的前向推理过程

2.1 解耦边界框坐标

2.1.1 先验框矩阵的生成

YOLOv3网络配置参数如下,我们从中能看到anchor_size变量。这是基于kmeans聚类,在COCO数据集上聚类出的先验框,由于COCO数据集更大、图片更加丰富,因此我们将这几个先验框用在VOC数据集上。

# RT-ODLab/config/model_config/yolov3_config.py
# YOLOv3 Configyolov3_cfg = {'yolov3':{# ---------------- Model config ----------------## Backbone'backbone': 'darknet53','pretrained': True,'stride': [8, 16, 32],  # P3, P4, P5'width': 1.0,'depth': 1.0,'max_stride': 32,## Neck'neck': 'sppf','expand_ratio': 0.5,'pooling_size': 5,'neck_act': 'silu','neck_norm': 'BN','neck_depthwise': False,## FPN'fpn': 'yolov3_fpn','fpn_act': 'silu','fpn_norm': 'BN','fpn_depthwise': False,## Head'head': 'decoupled_head','head_act': 'silu','head_norm': 'BN','num_cls_head': 2,'num_reg_head': 2,'head_depthwise': False,'anchor_size': [[10, 13],   [16, 30],   [33, 23],     # P3[30, 61],   [62, 45],   [59, 119],    # P4[116, 90],  [156, 198], [373, 326]],  # P5# ---------------- Train config ----------------## input'trans_type': 'yolov5_large','multi_scale': [0.5, 1.0],# ---------------- Assignment config ----------------## matcher'iou_thresh': 0.5,# ---------------- Loss config ----------------## loss weight'loss_obj_weight': 1.0,'loss_cls_weight': 1.0,'loss_box_weight': 5.0,# ---------------- Train config ----------------'trainer_type': 'yolov8',},'yolov3_tiny':{# ---------------- Model config ----------------## Backbone'backbone': 'darknet_tiny','pretrained': True,'stride': [8, 16, 32],  # P3, P4, P5'width': 0.25,'depth': 0.34,'max_stride': 32,## Neck'neck': 'sppf','expand_ratio': 0.5,'pooling_size': 5,'neck_act': 'silu','neck_norm': 'BN','neck_depthwise': False,## FPN'fpn': 'yolov3_fpn','fpn_act': 'silu','fpn_norm': 'BN','fpn_depthwise': False,## Head'head': 'decoupled_head','head_act': 'silu','head_norm': 'BN','num_cls_head': 2,'num_reg_head': 2,'head_depthwise': False,'anchor_size': [[10, 13],   [16, 30],   [33, 23],     # P3[30, 61],   [62, 45],   [59, 119],    # P4[116, 90],  [156, 198], [373, 326]],  # P5# ---------------- Train config ----------------## input'trans_type': 'yolov5_nano','multi_scale': [0.5, 1.0],# ---------------- Assignment config ----------------## matcher'iou_thresh': 0.5,# ---------------- Loss config ----------------## loss weight'loss_obj_weight': 1.0,'loss_cls_weight': 1.0,'loss_box_weight': 5.0,# ---------------- Train config ----------------'trainer_type': 'yolov8',},}
  • YOLOv3在C3、C4和C5每个特征图上,在每个网格处放置3个先验框。

    • C3特征图,每个网格处放置(10, 13)、(16, 30)、(33, 23)三个先验框,用来检测较小的物体。
    • C4特征图,每个网格处放置(30, 61)、(62, 45)、(59, 119)三个先验框,用来检测中等大小的物体。
    • C5特征图,每个网格处放置(116, 90)、(156, 198)、(373, 326)三个先验框,用来检测较大的物体。
  • YOLOv3先验框矩阵生成的代码逻辑和YOLOv2相同。只是多1个level参数,用于标记是三个尺度的哪一个。每一个尺度都需要生成相应的先验框矩阵。

    # RT-ODLab/models/detectors/yolov3/yolov3.py## generate anchor pointsdef generate_anchors(self, level, fmp_size):"""fmp_size: (List) [H, W]level=0, 默认缩放后的图像为416×416,那么经过8倍下采样后, fmp_size为52×52level=1, 默认缩放后的图像为416×416,那么经过16倍下采样后,fmp_size为26×26level=2, 默认缩放后的图像为416×416,那么经过32倍下采样后,fmp_size为13×13"""# 1、特征图的宽和高fmp_h, fmp_w = fmp_size# [KA, 2]anchor_size = self.anchor_size[level]# 2、生成网格的x坐标和y坐标anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])# 3、将xy两部分的坐标拼接起来,shape为[H, W, 2]#    再转换下, shape变为[HW, 2]anchor_xy = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)# 4、引入了anchor box机制,每个网格包含A个anchor,因此每个(grid_x, grid_y)的坐标需要复制A(Anchor nums)份# 相当于  每个level每个网格左上角的坐标点复制3份  作为3个不同宽高anchor box的中心点# [HW, 2] -> [HW, KA, 2] -> [M, 2]anchor_xy = anchor_xy.unsqueeze(1).repeat(1, self.num_anchors, 1)anchor_xy = anchor_xy.view(-1, 2).to(self.device)# 5、每一个特征图的3组anchor box的宽高都复制fmp_size(例如: 13×13)份# [KA, 2] -> [1, KA, 2] -> [HW, KA, 2] -> [M, 2]anchor_wh = anchor_size.unsqueeze(0).repeat(fmp_h*fmp_w, 1, 1)anchor_wh = anchor_wh.view(-1, 2).to(self.device)# 6、将中心点和宽高cat起来,得到的shape为[M, 4]# level=0, 其中M=52×52×3 表示feature map为52×52,每个网格有3组anchor box# level=1, 其中M=26×26×3 表示feature map为26×26,每个网格有3组anchor box# level=2, 其中M=13×13×3 表示feature map为13×13,每个网格有3组anchor boxanchors = torch.cat([anchor_xy, anchor_wh], dim=-1)return anchors

2.1.2 解算边界框

  • 生成先验框矩阵后,我们就能通过边界框偏移量reg_pred解耦出边界框坐标box_pred。
  • 在前向推理中,和之前YOLOv2逻辑一致,仅仅是多了多级检测部分的代码,需要经过for循环收集三个尺度的obj_preds, cls_preds和box_preds预测。
# RT-ODLab/models/detectors/yolov3/yolov3.py
import torch
import torch.nn as nnfrom utils.misc import multiclass_nmsfrom .yolov3_backbone import build_backbone
from .yolov3_neck import build_neck
from .yolov3_fpn import build_fpn
from .yolov3_head import build_head# YOLOv3
class YOLOv3(nn.Module):def __init__(self,cfg,device,num_classes=20,conf_thresh=0.01,topk=100,nms_thresh=0.5,trainable=False,deploy=False,nms_class_agnostic=False):super(YOLOv3, self).__init__()# ------------------- Basic parameters -------------------self.cfg = cfg                                 # 模型配置文件self.device = device                           # cuda或者是cpuself.num_classes = num_classes                 # 类别的数量self.trainable = trainable                     # 训练的标记self.conf_thresh = conf_thresh                 # 得分阈值self.nms_thresh = nms_thresh                   # NMS阈值self.topk = topk                               # topkself.stride = [8, 16, 32]                      # 网络的输出步长self.deploy = deployself.nms_class_agnostic = nms_class_agnostic# ------------------- Anchor box -------------------self.num_levels = 3self.num_anchors = len(cfg['anchor_size']) // self.num_levelsself.anchor_size = torch.as_tensor(cfg['anchor_size']).float().view(self.num_levels, self.num_anchors, 2) # [S, A, 2]# ------------------- Network Structure -------------------## 主干网络self.backbone, feats_dim = build_backbone(cfg['backbone'], trainable&cfg['pretrained'])## 颈部网络: SPP模块self.neck = build_neck(cfg, in_dim=feats_dim[-1], out_dim=feats_dim[-1])feats_dim[-1] = self.neck.out_dim## 颈部网络: 特征金字塔self.fpn = build_fpn(cfg=cfg, in_dims=feats_dim, out_dim=int(256*cfg['width']))self.head_dim = self.fpn.out_dim## 检测头self.non_shared_heads = nn.ModuleList([build_head(cfg, head_dim, head_dim, num_classes) for head_dim in self.head_dim])## 预测层self.obj_preds = nn.ModuleList([nn.Conv2d(head.reg_out_dim, 1 * self.num_anchors, kernel_size=1) for head in self.non_shared_heads]) self.cls_preds = nn.ModuleList([nn.Conv2d(head.cls_out_dim, self.num_classes * self.num_anchors, kernel_size=1) for head in self.non_shared_heads]) self.reg_preds = nn.ModuleList([nn.Conv2d(head.reg_out_dim, 4 * self.num_anchors, kernel_size=1) for head in self.non_shared_heads])                 # ---------------------- Basic Functions ----------------------## generate anchor pointsdef generate_anchors(self, level, fmp_size):......## post-processdef post_process(self, obj_preds, cls_preds, box_preds):pass# ---------------------- Main Process for Inference ----------------------@torch.no_grad()def inference(self, x):# x.shape = (1, 3, 416, 416)# 主干网络# pyramid_feats[0] = (1, 256,  52, 52)# pyramid_feats[1] = (1, 512,  26, 26)# pyramid_feats[2] = (1, 1024, 13, 13)pyramid_feats = self.backbone(x)# 颈部网络(SPPF)# pyramid_feats[-1] = (1, 1024, 13, 13)pyramid_feats[-1] = self.neck(pyramid_feats[-1])# 特征金字塔# pyramid_feats[0] = (1, 256,  52, 52)# pyramid_feats[1] = (1, 256,  26, 26)# pyramid_feats[2] = (1, 256, 13, 13)pyramid_feats = self.fpn(pyramid_feats)# 检测头all_obj_preds = []all_cls_preds = []all_box_preds = []for level, (feat, head) in enumerate(zip(pyramid_feats, self.non_shared_heads)):cls_feat, reg_feat = head(feat)# 回归分支和分类分支分别经过1×1卷积得到预测结果# [1, C, H, W]# level=0, obj_pred=(1, 3, 52, 52),cls_pred=(1, 3*20, 52, 52),cls_pred=(1, 3*4, 52, 52)# level=1, obj_pred=(1, 3, 26, 26),cls_pred=(1, 3*20, 26, 26),cls_pred=(1, 3*4, 26, 26)# level=2, obj_pred=(1, 3, 13, 13),cls_pred=(1, 3*20, 13, 13),cls_pred=(1, 3*4, 13, 13)obj_pred = self.obj_preds[level](reg_feat)cls_pred = self.cls_preds[level](cls_feat)reg_pred = self.reg_preds[level](reg_feat)# 每一个尺度,都需要生成边界框矩阵# anchors: [M, 2]fmp_size = cls_pred.shape[-2:]anchors = self.generate_anchors(level, fmp_size)# [1, AC, H, W] -> [H, W, AC] -> [M, C]obj_pred = obj_pred[0].permute(1, 2, 0).contiguous().view(-1, 1)cls_pred = cls_pred[0].permute(1, 2, 0).contiguous().view(-1, self.num_classes)reg_pred = reg_pred[0].permute(1, 2, 0).contiguous().view(-1, 4)# decode bbox# 解算边界框ctr_pred = (torch.sigmoid(reg_pred[..., :2]) + anchors[..., :2]) * self.stride[level]wh_pred = torch.exp(reg_pred[..., 2:]) * anchors[..., 2:]pred_x1y1 = ctr_pred - wh_pred * 0.5pred_x2y2 = ctr_pred + wh_pred * 0.5box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)all_obj_preds.append(obj_pred)all_cls_preds.append(cls_pred)all_box_preds.append(box_pred)# 循环结束,就得到了all_obj_preds, all_cls_preds, all_box_preds# 然后进行后处理if self.deploy:obj_preds = torch.cat(all_obj_preds, dim=0)cls_preds = torch.cat(all_cls_preds, dim=0)box_preds = torch.cat(all_box_preds, dim=0)scores = torch.sqrt(obj_preds.sigmoid() * cls_preds.sigmoid())bboxes = box_preds# [n_anchors_all, 4 + C]outputs = torch.cat([bboxes, scores], dim=-1)return outputselse:# post processbboxes, scores, labels = self.post_process(all_obj_preds, all_cls_preds, all_box_preds)return bboxes, scores, labels# ---------------------- Main Process for Training ----------------------def forward(self, x):if not self.trainable:return self.inference(x)else:......

2.2 后处理

  • 经过for循环得到三个尺度所有的预测后,就进入到了后处理阶段。
  • 和YOLOv2的后处理的代码逻辑相同,但是因为多了多级检测,因此需要通过for循环,对每一个尺度的预测进行后处理。
  • 实现后处理的代码后,模型的forward函数就清晰了,不再赘述。
    # RT-ODLab/models/detectors/yolov3/yolov3.py## post-processdef post_process(self, obj_preds, cls_preds, box_preds):"""Input:obj_preds: List(Tensor) [[H x W x A, 1], ...] ,即[[52×52×3,  1], [26×26×3,  1], [13×13×3,  1]]cls_preds: List(Tensor) [[H x W x A, C], ...] ,即[[52×52×3, 20], [26×26×3, 20], [13×13×3, 20]]box_preds: List(Tensor) [[H x W x A, 4], ...] ,即[[52×52×3,  4], [26×26×3,  4], [13×13×3,  4]]anchors:   List(Tensor) [[H x W x A, 2], ...]"""all_scores = []all_labels = []all_bboxes = []# 对每一个尺度循环for obj_pred_i, cls_pred_i, box_pred_i in zip(obj_preds, cls_preds, box_preds):# (H x W x KA x C,)scores_i = (torch.sqrt(obj_pred_i.sigmoid() * cls_pred_i.sigmoid())).flatten()# 1、topk操作# Keep top k top scoring indices only.num_topk = min(self.topk, box_pred_i.size(0))# torch.sort is actually faster than .topk (at least on GPUs)predicted_prob, topk_idxs = scores_i.sort(descending=True)topk_scores = predicted_prob[:num_topk]topk_idxs = topk_idxs[:num_topk]# 2、滤掉低得分(边界框的score低于给定的阈值)的预测边界框# filter out the proposals with low confidence scorekeep_idxs = topk_scores > self.conf_threshscores = topk_scores[keep_idxs]topk_idxs = topk_idxs[keep_idxs]# 获取flatten之前topk_scores所在的idx以及相应的labelanchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')labels = topk_idxs % self.num_classesbboxes = box_pred_i[anchor_idxs]all_scores.append(scores)all_labels.append(labels)all_bboxes.append(bboxes)# 将三个尺度的预测结果concat起来,然后进行nmsscores = torch.cat(all_scores)labels = torch.cat(all_labels)bboxes = torch.cat(all_bboxes)# to cpu & numpyscores = scores.cpu().numpy()labels = labels.cpu().numpy()bboxes = bboxes.cpu().numpy()# nms#  3、滤掉那些针对同一目标的冗余检测。scores, labels, bboxes = multiclass_nms(scores, labels, bboxes, self.nms_thresh, self.num_classes, self.nms_class_agnostic)return bboxes, scores, labels

接下来,就到了正样本的匹配和损失函数计算了、以及数据预处理。

  • 正样本的匹配和损失函数计算,我们会延续之前YOLOv2的做法。
  • 对于数据预处理、数据增强等,我们不再采用之前SSD风格的处理手段,而是选择YOLOv5的数据处理方法来训练我们的YOLOv3。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/434825.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

独占指针:unique_ptr 与 函数调用 笔记

推荐B站视频: 2.unique_ptr_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV18B4y187uL?p2&vd_sourcea934d7fc6f47698a29dac90a922ba5a3 3.unique_ptr与函数调用_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV18B4y187uL?p3&vd_sourcea934d…

【MyBatis】#{} 和 ${}

目录 1. #{} 使用示例: 2. ${} 使用示例: SQL注入 使用#{}的情况: 使用${}的情况: MyBatis是一种用于Java语言的持久层框架,它简化了数据库操作的过程。在MyBatis中,我们经常会看到两种不同的参数占…

UDF学习(三)数据访问宏

数据访问宏一 网格节点相关宏** NODE_X (v) 节点v的x方向的坐标 (Node *v) NODE_Y (v) 节点v的y方向的坐标 (Node *v) NODE_Z (v) 节点v的z方向的坐标 (Node *v) F_NODE (f,t,n) 获取节点 (face_t f, Thre…

vivado 放置I/O端口

放置I/O端口 I/O规划视图布局提供了几种将I/O端口分配给封装引脚的方法。你可以在“I/O端口”窗口中选择单个I/O端口、I/O端口组或接口,然后分配将它们封装到封装窗口中的封装引脚或设备窗口中的I/O焊盘。在“程序包”窗口中,您可以: •将端…

基于springboot+vue的明星周边产品销售网站(前后端分离)

博主主页:猫头鹰源码 博主简介:Java领域优质创作者、CSDN博客专家、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战 主要内容:毕业设计(Javaweb项目|小程序等)、简历模板、学习资料、面试题库、技术咨询 文末联系获取 研究背景…

算子:详细篇

目录 一、执行环境 1.1 创建执行环境 1.2 执行模式 二、源算子 2.1 从集合中读取数据 2.2 从文件读取数据 2.3 从socket读取数据 2.4 从kafka读取数据 三、转换算子 3.1 基本转换算子 (1)映射(map) (2)过滤(filter) &#xff08…

用友U8接口-系统管理(3)

教程目录 部署和简要说明(1) 获取token&数据字段(2) 概括 本文的操作需要正确部署U8HttpApi对本套接口系统管理目录说明 系统管理 获取token 参考获取token 根据sql进行查询 此POST方式接口运行调用者传入SQL语句,或者将SQL语句写到xml文件中&#xff0…

软件测试20个基础面试题及答案

什么是软件测试? 答案:软件测试是指在预定的环境中运行程序,为了发现软件存在的错误、缺陷以及其他不符合要求的行为的过程。 软件测试的目的是什么? 答案:软件测试的主要目的是保证软件的质量,并尽可能…

mysql INSERT数据覆盖现有元素(若存在)

INSERT...ON DUPLICATE KEY UPDATE的使用 如果指定了ON DUPLICATE KEY UPDATE,并且插入行后会导致在一个UNIQUE索引或PRIMARY KEY中出现重复值,则会更新ON DUPLICATE KEY UPDATE关键字后面的字段值。 例如,如果列a被定义为UNIQUE&#xff0…

OSI七层模型 | TCP/IP模型 | 网络和操作系统的联系 | 网络通信的宏观流程

文章目录 1.OSI七层模型2.TCP/IP五层(或四层)模型3.网络通信的宏观流程3.1.同网段通信3.2.跨网段通信 1.OSI七层模型 在计算机通信诞生之初,不同的厂商都生产自己的设备,都有自己的网络通讯标准,导致了不同厂家之间各种协议不兼容&#xff0…

AI数字人-数字人视频创作数字人直播效果媲美真人

在科技的不断革新下,数字人技术正日益融入到人们的生活中。近年来,随着AI技术的进一步发展,数字人视频创作领域出现了一种新的创新方式——AI数字人。数字人视频通过AI算法生成虚拟主播,其外貌、动作、语音等方面可与真实人类媲美…

v43-47.problems

1.for循环 一般地,三步走: for(初始化;表达式判断;递增/递减) { ....... } 但是,如果说声明了全局变量,那么第一步初始化阶段可以省略但是要写分号‘ ; ’…