使用make_grid多批次显示网格图像(使用CIFAR数据集介绍)

背景介绍

在机器学习的训练数据集中,我们经常使用多批次的训练来实现更好的训练效果,具体到cv领域,我们的训练数据集通常是[B,C,W,H]格式,其中,B是每个训练批次的大小,C是图片的通道数,如果是1则为灰度图像,如果是3则为彩色图像,W,H分别是图像的像素宽和像素高,在torchvision中,为我们提供了方便的方法显示多通道的图像显示成网格的格式

数据集介绍

这里使用机器学习中经典的CIFAR10数据集,具体可以参考博客CIFAR-10数据集详解与可视化_cifar10数据集可视化-CSDN博客

数据集读取

我们假设已经下载好CIFAR数据集保存在本地计算机的路径中,可以通过CIFAR函数进行读取

# 依赖的库环境
import torchvision
import torch
from torchvision.datasets import CIFAR10
import matplotlib.pyplot as plt
from torchvision.transforms import ToTensor,Compose,Resize

读取CIFAR数据集中的训练数据集

train_dataset = CIFAR10(r'D:\deep_learning\12_16\data', train=True, download=False,transform=ToTensor())

这里的转换方式是使用简单的ToTensor()将图片格式转换成经典的[C,W,H]格式,方便后续的可视化操作

此时我们可以简单地对数据集中的第一张图片进行可视化

img,label = train_dataset[0]
plt.imshow(img.permute(1,2,0))
plt.show()

构造批次数据集

如何构造批次的训练数据集呢?可以通过DataLoader的方式获得批次生成器,也可以通过torch.stack函数自定义地构成

cifar_img = torch.stack([train_dataset[i][0] for i in range(4)], dim=0)

这里使用列表推导式获得前4张图片组成的数据列表,通过torch.stack指定dim=0进行多个数据的堆加,这里需要注意的是,stack是在指定的维度新增一个维度进行多矩阵的合并,cat是在指定的维度上合并多个矩阵而不增加新的维度

cat与stack的区别

我们来具体看看两者的区别

cat_img = torch.cat([train_dataset[i][0] for i in range(4)],dim=0)
stack_img = torch.stack([train_dataset[i][0] for i in range(4)],dim=0)
print(f'cat_shape:{cat_img.shape}')
print(f'stack_shape:{stack_img.shape}')
cat_shape:torch.Size([12, 32, 32])
stack_shape:torch.Size([4, 3, 32, 32])

train_dataset[i][0]的形状为[3,32,32],当使用cat时,直接在第一维度上进行累加获得[12,32,32];使用stack时,在指定的第一维度上新增一个维度进行累加,有[4,3,32,32]

进行网格化显示

使用torchvision.utils.make_grid函数进行网格格式转换

train_dataset = CIFAR10(r'D:\deep_learning\12_16\data', train=True, download=False,transform=ToTensor())
cifar_img = torch.stack([train_dataset[i][0] for i in range(4)], dim=0)
img_grid = torchvision.utils.make_grid(cifar_img,nrow=4,normalize=True,pad_value=0.9,padding=1)
plt.imshow(img_grid.permute(1,2,0))
plt.show()

nrow是指定每一行的图片的数量,这里只有四张图片,所以是4,默认nrow=8

normalize是对图片数据进行标准化

pad_value是对图片间隔之间的像素进行填充的像素值

padding是指定图片之间的像素间隔数量

同时显示100张图片

train_dataset = CIFAR10(r'D:\deep_learning\12_16\data', train=True, download=False,transform=ToTensor())
cifar_img = torch.stack([train_dataset[i][0] for i in range(100)], dim=0)
img_grid = torchvision.utils.make_grid(cifar_img,nrow=10,normalize=True,pad_value=0.9,padding=1)
plt.imshow(img_grid.permute(1,2,0))
plt.show()

批次图片可视化

我们对使用DataLoader生成的批次数据进行可视化

if __name__=='__main__':train_dataset = CIFAR10(r'D:\deep_learning\12_16\data', train=True, download=False,transform=ToTensor())trainloader = DataLoader(train_dataset,shuffle=True,batch_size=128,num_workers=8)trainloader = iter(trainloader)trainloader_first_batch = next(trainloader)imgs,labels = trainloader_first_batchbatch_grid = torchvision.utils.make_grid(imgs)plt.imshow(batch_grid.permute(1,2,0))plt.show()

对训练数据集更好的了解是为了在训练的时候获得更好的模型性能,欢迎大家讨论交流~


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/434880.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

OpenHarmony关系型数据库

1 概述 关系型数据库(Relational Database, 以下简称RDB)是一种基于关系模型来管理数据的数据库,是在SQLite基础上提供一套完整的对本地数据库进行管理的机制,为开发者提供无需编写原生SQL语句即可实现数据增、删、改、查等接口,同时开发者也…

2023.1.23 关于 Redis 哨兵模式详解

目录 引言 人工恢复主节点故障 ​编辑 主从 哨兵模式 Docker 模拟部署哨兵模式 关于端口映射 展现哨兵机制 哨兵重新选取主节点的流程 哨兵模式注意事项 引言 人工恢复主节点故障 1、正常情况 2、主节点宕机 3、程序员主动恢复 先看看该主节点还能不能抢救如果不好定…

Vue中使用TypeScript:全面指南和最佳实践

🚀 欢迎来到我的专栏!专注于Vue3的实战总结和开发实践分享,让你轻松驾驭Vue3的奇妙世界! 🌈✨在这里,我将为你呈现最新的Vue3技术趋势,分享独家实用教程,并为你解析开发中的难题。让我们一起深入Vue3的魅力,助力你成为Vue大师! 👨‍💻💡不再徘徊,快来关注…

首发:2024全球DAO组织发展研究

作者,张群(专注DAO及区块链应用研究,赛联区块链教育首席讲师,工信部赛迪特邀资深专家,CSDN认证业界专家,微软认证专家,多家企业区块链产品顾问) DAO(去中心化自治组织&am…

排序问题上机考试刷题

排序与查找可以说是计算机领域最经典的问题,排序和查找问题在考研机试真题中经常出现。排序考点在历年机试考点中分布广泛。排序既是考生必须掌握的基本算法,又是考生 学习其他大部分算法的前提和基础。首先学习对基本类型的排序。对基本类型排序&#x…

【阿里云服务器数据迁移】 同一个账号 不同区域服务器

前言 假如说一台云服务器要过期了,现在新买了一台,有的人会烦恼又要将重新在新的服务器上装环境,部署上线旧服务器上的网站项目, 但是不必烦恼,本文将介绍如何快速将就旧的服务器上的数据迁移到新的服务器上. 包括所有的环境和网站项目噢 ! 步骤 (1) 创建旧服务器自定义镜像…

STM32 PWM驱动设计

单片机学习! 目录 文章目录 前言 一、PWM驱动配置步骤 二、代码示例及注意事项 2.1 RCC开启时钟 2.2 配置时基单元 2.3 配置输出比较单元 2.4 配置GPIO 2.5 运行控制 三、PWM周期和占空比计算 总结 前言 PWM本质是利用面积等效原理来改变波形的有效值。 一、PWM驱动…

探索IOC和DI:解密Spring框架中的依赖注入魔法

IOC与DI的详细解析 IOC详解1 bean的声明2 组件扫描 DI详解 IOC详解 1 bean的声明 IOC控制反转,就是将对象的控制权交给Spring的IOC容器,由IOC容器创建及管理对象。IOC容器创建的对象称为bean对象。 要把某个对象交给IOC容器管理,需要在类上…

春运挑战:网络购票平台需引入分账系统提高交易效率

随着春运的来临,网络购票平台面临了巨大的挑战。旅游平台的车票、机票、酒店等订单激增,给平台的交易承载力带来了巨大压力。为了应对这一挑战,网络购票平台需要提前引入分账系统,以提高整体的交易效率。 春运背景与挑战 春运是中…

手把手教你搓一个最小系统板【画PCB-->布线 -->制版-->焊接】

文章目录 一、基础电路1. 晶振电路2. 稳压电路3. 复位/按键电路4. BOOT电路5. SWD接口6. 滤波电容7. LED电路8. 拓展引脚设计总览 二、布局布线三、制版四、焊接 在大学嵌入式相关专业,有许多同学是更偏向软件上的设计,并不懂硬件上的实现,而…

ANSYS 2023 下载安装教程,附安装包和工具,轻松安装,无套路

前言 ANSYS是一款融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析(FEA)软件,能与多数计算机辅助设计软件接口,实现数据的共享和交换,如Creo,NASTRAN、Algor、IDEAS、AutoCAD等. 准备工作 1、Win10及以上系统 2、提前准备好…

java自动化将用例和截图一起执行测试放入world中直接生成测试报告【搬代码】

1.首先我们得用例写好之后放入文档中,把不用的案例类型、前置条件去掉之后,如图: 放到桌面后,先看执行结果: 首先,我们先创建一个时间,这个时间主要是给图片创建名称,并且要在插入…