大数据 - Hadoop系列《四》- MapReduce(分布式计算引擎)的核心思想

上一篇:

大数据 - Hadoop系列《三》- MapReduce(分布式计算引擎)概述-CSDN博客

目录

13.1 MapReduce实例进程

13.2 阶段组成

13.4 概述

13.4.1 🥙Map阶段(映射)

13.4.2 🥙Reduce阶段执行过程

13.4.3 🥙Shuffle机制


🐶13.1 MapReduce实例进程

一个完整的MapReduce程序在分布式运行时有三类

  • MRAppMaster:负责整个MR程序的过程调度及状态协调

  • MapTask:负责map阶段的整个数据处理流程

  • ReduceTask:负责reduce阶段的整个数据处理流程

🐶13.2 阶段组成

  • 一个MapReduce编程模型中只能包含一个Map阶段和一个Reduce阶段,或者只有Map阶段

  • 不能有诸如多个Map阶段、多个Reduce阶段的情景出现。

  • 如果用户的业务逻辑非常复杂,那就只能多个MapReduce程序串行运行。

13.3 MapReduce数据类型 

注意:整个MapReduce程序中,数据都是以kv键值对的形式流转的

在实际编程解决各种业务问题中,需要考虑每个阶段的输入输出kv分别是什么

MapReduce内置了很多默认属性,比如排序、分组等,都和数据的k有关,所以说kv的类型数据确定及其重要的。

🐶13.4 概述

一个最终完整版本的MR程序需要用户编写的代码Hadoop自己实现的代码整合在一起才可以。

其中用户负责map、reduce两个阶段的业务问题,hadoop负责底层所有的技术问题;

由于MapReduce计算引擎天生的弊端(慢),当下企业直接使用率以及日薄西山了,所以在企业中工作很少涉及到MapReduce直接编程,但是某些软件的背后还依赖MapReduce引擎。

可以通过官方提供的示例来感受MapReduce及其内部执行流程,因为后续的新的计算引擎比如Spark,当中就有MapReduce深深的影子存在。

MR的核心思想如下图所示:

MapReduce程序的工作分两个阶段进行:

13.4.1 🥙Map阶段(映射)

这个函数单独地应用在每个单元格上的操作就属于映射(Map).

  • 第一阶段:把输入目录下文件按照一定的标准逐个进行逻辑切片,形成切片规划

默认Split size=Block size(128M),每一个切片由一个MapTask处理。(getsplits)

  • 第二阶段:对切片中的数据按照一定的规则读取解析返回<key,value>对。

默认是按行读取数据,key是每一行的起始位置偏移量,value是本行的文本内容(TextInputFormat)

  • 第三阶段:调用Mapper类中的map方法处理数据

每读取解析出来的一个<key,value>,调用一次map方法

  • 第四阶段:按照一定规则对Map输出的键值对进行分区partition.默认不分区,因为只有一个reducetask,分区的数量就是reducetask运行的数量。

  • 第五阶段:Map输出数据写入内存缓冲区,达到比例溢出到磁盘上。溢出spill的时候根据key进行排序sort.默认根据key字典序排序。

  • 第六阶段:对所有溢出文件进行最终的merge合并,成为一个文件。

13.4.2 🥙Reduce阶段执行过程

第一阶段:ReduceTask会主动从MapTask复制拉取属于需要自己处理的数据。

第二阶段:把拉取来的数据,全部进行合并merge,即把分散的数据合并成一个大的数据,再会合并的数据排序。

第三阶段:是对排序后的键值对调用reduce方法。键相等的键值对调用一次reduce方法。最后把这些输出的键值对写入到HDFS文件中。

13.4.3 🥙Shuffle机制

1. 概述

  • Shuffle的本意是洗牌、混洗的意思,把一组有规则的数据尽量打乱成无规则的数据。

  • 而在MapReduce中,Shuffle更像是洗牌的逆过程,指的是将map端的无规则输出按指定的规则“打乱”成具有一定规则的数据,以便reduce端接收处理。

  • 一般把从Map产生输出到Reduce取得数据作为输入之前的过程称作shuffle

2. Map端Shuffle

  • Collect阶段:将MapTask的结果收集输出到默认大小为100M的环形缓冲区,保留之前会对key进行分区的计算,默认Hash分区

  • Spill阶段:当内存中的数据量达到一定的阈值的时候,就会将数据写入本地磁盘,在将数据写入磁盘之前需要对数据进行一次排序的操作,如果配置了combiner,还会将相同分区号和key的数据进行排序。

  • Merge阶段:把所有溢出的临时文件进行一次合并操作,以确保一下MapTask最终只产生一个中间数据文件。

3. Reducer端Shuffle

  • Copy阶段:ReduceTask启动Fetcher线程到已经完成MapTask的节点上复制一份属于自己的数据。

  • Merger阶段:在ReduceTask远程复制数据的同时,会在后台开启两个线程对内存到本地的数据文件进行合并操作。

  • Sort阶段:在对数据进行合并的同时,会进行排序操作,由于MapTask阶段已经对数据进行了局部的排序,ReduceTask只需保证copy的数据的最终整体有效性即可。

4. Shuffle机制弊端

  • Shuffle是MapReduce程序的核心和精髓,是MapReduce的灵魂所在。

  • Shuffle也是MapReduce被诟病最多的地方所在,MapReduce相比较于Spark、Flink计算引擎慢的原因,跟Shuffle机制有很大的关系。

  • Shuffle中频繁涉及到数据在内存、磁盘之间的多次往复。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/443089.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

安卓视图基础

目录 设置视图的宽高 设置视图的间隔 设置视图的对齐方式 设置视图的宽高 设置视图的间隔 设置视图的对齐方式 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas.android.com/apk/res/android"a…

【Linux】线程池的简易实现(懒汉模式)

文章目录 前言一、懒汉方式1.普通模式1.线程安全模式 二、源代码1.Task.hpp(要执行的任务)2.ThreadPool.hpp(线程池)3.Main.cpp 前言 线程池: 一种线程使用模式。线程过多会带来调度开销&#xff0c;进而影响缓存局部性和整体性能。而线程池维护着多个线程&#xff0c;等待着监…

公司如何测试员工对网络钓鱼的反应?

&#x1f4e9; "下午好&#xff0c;文件已经商定。请到下面链接的门户网站下载"。 我们每个人都可能在工作电子邮件中收到此类内容的信息&#xff1a;它可能来自真正的员工&#xff0c;也可能来自公司的信息安全服务部门&#xff0c;该部门决定对您进行检查&#xf…

vue3项目下载@element-plus/icons-vue苦笑不得的乌龙

一、背景 node.js版本&#xff1a;v16.20.1 npm版本&#xff1a;8.19.4 pnpm版本&#xff1a;8.0.0 二、心路历程 pnpm install element-plus/icons-vue 用命令下载element-plus/icons-vue的时候&#xff0c;报错并提醒如图 是&#xff0c;我按照提示执行了&#xff0c;结…

seata Adjusted frame length exceeds 8388608: 539959368,nacos+mysql+seata部署

问题&#xff1a;docker 部署 seata 后出现异常 seata Adjusted frame length exceeds 8388608: 539959368 CSDN上找了一圈都解决不了。github又半天访问不上。后来终于访问上了&#xff0c;发现这是一个很离谱的问题。。。 原因&#xff1a;访问错了端口 seata默认分两个端口…

Google Gemini Pro 国内版

Google Gemini Pro 国内版&#xff1a;【直达链接】 Google Gemini Pro 国内版 能力分类基准测试描述更高分数更好Gemini UltraGPT-4通用MMLU57个主题&#xff08;包括STEM、人文等&#xff09;的问题表示是90.0%86.4%&#xff08;5-shot, 报告&#xff09;推理Big-Bench Hard…

架构设计 高性能带来的复杂度

架构设计的主要目的是为了解决软件系统复杂度带来的问题。 复杂度来源之一就是软件的高性能。 对性能孜孜不倦的追求是整个人类技术不断发展的根本驱动力。例如计算机&#xff0c;从电子管计算机到晶体管计算机再到集成电路计算机&#xff0c;运算性能从每秒几次提升到每秒几…

OpenHarmony(鸿蒙应用开发 - 实战篇 四 ):工程目录结构。

简介 OpenHarmony是由开放原子开源基金会&#xff08;OpenAtom Foundation&#xff09;孵化及运营的开源项目&#xff0c;目标是面向全场景、全连接、全智能时代&#xff0c;基于开源的方式&#xff0c;搭建一个智能终端设备操作系统的框架和平台&#xff0c;促进万物互联产业…

毕业设计过程学习

传统的目标检测算法主要通过人工设计与纹理、颜色和形状相关的特征来进行目标区域特征的提取。随着深度学习和人工智能技术的飞速发展&#xff0c;目标检测技术也取得了很大的成就。早期基于深度学习的目标检测算法的研究方向仍然是将目标定位任务和图像分类任务分离开来的&…

【2024程序员必看】鸿蒙应用开发行业分析

鸿蒙操作系统沉浸四年&#xff0c;这次终于迎来了破局的机会&#xff0c;自从2023年华为秋季发布会上宣布鸿蒙 Next操作系统不在兼容Android后&#xff0c;就有不少大厂开始陆续与华为达成了鸿蒙原生应用的开发合作&#xff0c;据1月18日华为官方宣布110多天的产业合力“突进”…

力扣hot100 组合总和 回溯 剪枝 组合

Problem: 39. 组合总和 文章目录 思路复杂度&#x1f496; Code 思路 复杂度 时间复杂度: O ( n ) O(n) O(n) 空间复杂度: O ( n ) O(n) O(n) &#x1f496; Code class Solution{List<List<Integer>> res new ArrayList<>();int x;// 全局targetin…

【百度Apollo】轨迹绘制:探索路径规划和可视化技术的应用

&#x1f3ac; 鸽芷咕&#xff1a;个人主页 &#x1f525; 个人专栏: 《linux深造日志》《粉丝福利》 ⛺️生活的理想&#xff0c;就是为了理想的生活! ⛳️ 推荐 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下…