LeetCode 每日一题Day 54 - 61

2859. 计算 K 置位下标对应元素的和

给你一个下标从 0 开始的整数数组 nums 和一个整数 k 。

请你用整数形式返回 nums 中的特定元素之 和 ,这些特定元素满足:其对应下标的二进制表示中恰存在 k 个置位。

整数的二进制表示中的 1 就是这个整数的 置位 。

例如,21 的二进制表示为 10101 ,其中有 3 个置位。

示例 1:

输入:nums = [5,10,1,5,2], k = 1
输出:13
解释:下标的二进制表示是:
0 = 0002
1 = 0012
2 = 0102
3 = 0112
4 = 1002
下标 1、2 和 4 在其二进制表示中都存在 k = 1 个置位。
因此,答案为 nums[1] + nums[2] + nums[4] = 13 。
示例 2:

输入:nums = [4,3,2,1], k = 2
输出:1
解释:下标的二进制表示是:
0 = 002
1 = 012
2 = 102
3 = 112
只有下标 3 的二进制表示中存在 k = 2 个置位。
因此,答案为 nums[3] = 1 。

提示:

1 <= nums.length <= 1000
1 <= nums[i] <= 1e5
0 <= k <= 10

简单模拟:

class Solution {
public:int sumIndicesWithKSetBits(vector<int>& nums, int k) {int len = nums.size();int ans = 0;if(len < 1) {return 0;}for(int i = 0;i < len;i++){int tmp = i;int count = 0;while(tmp > 0 && tmp != 1){if(tmp % 2 == 1) {count++;}tmp = tmp / 2;}if(tmp == 1) {count++;}if(count == k) {ans += nums[i];}}return ans;}
};

2846. 边权重均等查询(Hard)

现有一棵由 n 个节点组成的无向树,节点按从 0 到 n - 1 编号。给你一个整数 n 和一个长度为 n - 1 的二维整数数组 edges ,其中 edges[i] = [ui, vi, wi] 表示树中存在一条位于节点 ui 和节点 vi 之间、权重为 wi 的边。

另给你一个长度为 m 的二维整数数组 queries ,其中 queries[i] = [ai, bi] 。对于每条查询,请你找出使从 ai 到 bi 路径上每条边的权重相等所需的 最小操作次数 。在一次操作中,你可以选择树上的任意一条边,并将其权重更改为任意值。

注意:

查询之间 相互独立 的,这意味着每条新的查询时,树都会回到 初始状态 。
从 ai 到 bi的路径是一个由 不同 节点组成的序列,从节点 ai 开始,到节点 bi 结束,且序列中相邻的两个节点在树中共享一条边。
返回一个长度为 m 的数组 answer ,其中 answer[i] 是第 i 条查询的答案。

示例 1:
在这里插入图片描述

输入:n = 7, edges = [[0,1,1],[1,2,1],[2,3,1],[3,4,2],[4,5,2],[5,6,2]], queries = [[0,3],[3,6],[2,6],[0,6]]
输出:[0,0,1,3]
解释:第 1 条查询,从节点 0 到节点 3 的路径中的所有边的权重都是 1 。因此,答案为 0 。
第 2 条查询,从节点 3 到节点 6 的路径中的所有边的权重都是 2 。因此,答案为 0 。
第 3 条查询,将边 [2,3] 的权重变更为 2 。在这次操作之后,从节点 2 到节点 6 的路径中的所有边的权重都是 2 。因此,答案为 1 。
第 4 条查询,将边 [0,1]、[1,2]、[2,3] 的权重变更为 2 。在这次操作之后,从节点 0 到节点 6 的路径中的所有边的权重都是 2 。因此,答案为 3 。
对于每条查询 queries[i] ,可以证明 answer[i] 是使从 ai 到 bi 的路径中的所有边的权重相等的最小操作次数。
示例 2:
在这里插入图片描述

输入:n = 8, edges = [[1,2,6],[1,3,4],[2,4,6],[2,5,3],[3,6,6],[3,0,8],[7,0,2]], queries = [[4,6],[0,4],[6,5],[7,4]]
输出:[1,2,2,3]
解释:第 1 条查询,将边 [1,3] 的权重变更为 6 。在这次操作之后,从节点 4 到节点 6 的路径中的所有边的权重都是 6 。因此,答案为 1 。
第 2 条查询,将边 [0,3]、[3,1] 的权重变更为 6 。在这次操作之后,从节点 0 到节点 4 的路径中的所有边的权重都是 6 。因此,答案为 2 。
第 3 条查询,将边 [1,3]、[5,2] 的权重变更为 6 。在这次操作之后,从节点 6 到节点 5 的路径中的所有边的权重都是 6 。因此,答案为 2 。
第 4 条查询,将边 [0,7]、[0,3]、[1,3] 的权重变更为 6 。在这次操作之后,从节点 7 到节点 4 的路径中的所有边的权重都是 6 。因此,答案为 3 。
对于每条查询 queries[i] ,可以证明 answer[i] 是使从 ai 到 bi 的路径中的所有边的权重相等的最小操作次数。

提示:

1 <= n <= 1e4
edges.length == n - 1
edges[i].length == 3
0 <= ui, vi < n
1 <= wi <= 26
生成的输入满足 edges 表示一棵有效的树
1 <= queries.length == m <= 2 * 1e4
queries[i].length == 2
0 <= ai, bi < n

这题用到LCA 以前没有了解过,这里照搬灵神题解,有时间可以出个专项练习题集:

class Solution {
public:vector<int> minOperationsQueries(int n, vector<vector<int>> &edges, vector<vector<int>> &queries) {vector<vector<pair<int, int>>> g(n);for (auto &e: edges) {int x = e[0], y = e[1], w = e[2] - 1;g[x].emplace_back(y, w);g[y].emplace_back(x, w);}int m = 32 - __builtin_clz(n); // n 的二进制长度vector<vector<int>> pa(n, vector<int>(m, -1));vector<vector<array<int, 26>>> cnt(n, vector<array<int, 26>>(m));vector<int> depth(n);function<void(int, int)> dfs = [&](int x, int fa) {pa[x][0] = fa;for (auto [y, w]: g[x]) {if (y != fa) {cnt[y][0][w] = 1;depth[y] = depth[x] + 1;dfs(y, x);}}};dfs(0, -1);for (int i = 0; i < m - 1; i++) {for (int x = 0; x < n; x++) {int p = pa[x][i];if (p != -1) {int pp = pa[p][i];pa[x][i + 1] = pp;for (int j = 0; j < 26; ++j) {cnt[x][i + 1][j] = cnt[x][i][j] + cnt[p][i][j];}}}}vector<int> ans;for (auto &q: queries) {int x = q[0], y = q[1];int path_len = depth[x] + depth[y]; // 最后减去 depth[lca] * 2int cw[26]{};if (depth[x] > depth[y]) {swap(x, y);}// 让 y 和 x 在同一深度for (int k = depth[y] - depth[x]; k; k &= k - 1) {int i = __builtin_ctz(k);int p = pa[y][i];for (int j = 0; j < 26; ++j) {cw[j] += cnt[y][i][j];}y = p;}if (y != x) {for (int i = m - 1; i >= 0; i--) {int px = pa[x][i], py = pa[y][i];if (px != py) {for (int j = 0; j < 26; j++) {cw[j] += cnt[x][i][j] + cnt[y][i][j];}x = px;y = py; // x 和 y 同时上跳 2^i 步}}for (int j = 0; j < 26; j++) {cw[j] += cnt[x][0][j] + cnt[y][0][j];}x = pa[x][0];}int lca = x;path_len -= depth[lca] * 2;ans.push_back(path_len - *max_element(cw, cw + 26));}return ans;}
};

题解:LCA 模板

2861. 最大合金数

假设你是一家合金制造公司的老板,你的公司使用多种金属来制造合金。现在共有 n 种不同类型的金属可以使用,并且你可以使用 k 台机器来制造合金。每台机器都需要特定数量的每种金属来创建合金。

对于第 i 台机器而言,创建合金需要 composition[i][j] 份 j 类型金属。最初,你拥有 stock[i] 份 i 类型金属,而每购入一份 i 类型金属需要花费 cost[i] 的金钱。

给你整数 n、k、budget,下标从 1 开始的二维数组 composition,两个下标从 1 开始的数组 stock 和 cost,请你在预算不超过 budget 金钱的前提下,最大化 公司制造合金的数量。

所有合金都需要由同一台机器制造。

返回公司可以制造的最大合金数。

示例 1:

输入:n = 3, k = 2, budget = 15, composition = [[1,1,1],[1,1,10]], stock = [0,0,0], cost = [1,2,3]
输出:2
解释:最优的方法是使用第 1 台机器来制造合金。
要想制造 2 份合金,我们需要购买:

  • 2 份第 1 类金属。
  • 2 份第 2 类金属。
  • 2 份第 3 类金属。
    总共需要 2 * 1 + 2 * 2 + 2 * 3 = 12 的金钱,小于等于预算 15 。
    注意,我们最开始时候没有任何一类金属,所以必须买齐所有需要的金属。
    可以证明在示例条件下最多可以制造 2 份合金。
    示例 2:

输入:n = 3, k = 2, budget = 15, composition = [[1,1,1],[1,1,10]], stock = [0,0,100], cost = [1,2,3]
输出:5
解释:最优的方法是使用第 2 台机器来制造合金。
要想制造 5 份合金,我们需要购买:

  • 5 份第 1 类金属。
  • 5 份第 2 类金属。
  • 0 份第 3 类金属。
    总共需要 5 * 1 + 5 * 2 + 0 * 3 = 15 的金钱,小于等于预算 15 。
    可以证明在示例条件下最多可以制造 5 份合金。
    示例 3:

输入:n = 2, k = 3, budget = 10, composition = [[2,1],[1,2],[1,1]], stock = [1,1], cost = [5,5]
输出:2
解释:最优的方法是使用第 3 台机器来制造合金。
要想制造 2 份合金,我们需要购买:

  • 1 份第 1 类金属。
  • 1 份第 2 类金属。
    总共需要 1 * 5 + 1 * 5 = 10 的金钱,小于等于预算 10 。
    可以证明在示例条件下最多可以制造 2 份合金。

提示:

1 <= n, k <= 100
0 <= budget <= 1e8
composition.length == k
composition[i].length == n
1 <= composition[i][j] <= 100
stock.length == cost.length == n
0 <= stock[i] <= 1e8
1 <= cost[i] <= 100

二分解法,思路清楚后不难:

class Solution {
public:int maxNumberOfAlloys(int n, int k, int b, vector<vector<int>>& a,vector<int>& s, vector<int>& c) {long long l = 0, r = 2 * 1e8 + 5, mid, ans = 0;while (l <= r) {mid = (l + r) / 2;if (se(n, k, b, mid, a, s, c)) {ans = max(ans, mid);l = mid + 1;} elser = mid - 1;}return ans;}bool se(int n, int k, int b, long long x, vector<vector<int>>& a,vector<int>& s, vector<int>& c) {long long sum, t = 0;for (int i = 0; i < k; i++) {sum = 0;for (int j = 0; j < n; j++) {long long ne = max(t, a[i][j] * x - s[j]);sum += ne * c[j];}if (sum <= b)return 1;}return 0;}
};

365. 水壶问题

有两个水壶,容量分别为 jug1Capacity 和 jug2Capacity 升。水的供应是无限的。确定是否有可能使用这两个壶准确得到 targetCapacity 升。

如果可以得到 targetCapacity 升水,最后请用以上水壶中的一或两个来盛放取得的 targetCapacity 升水。

你可以:

装满任意一个水壶
清空任意一个水壶
从一个水壶向另外一个水壶倒水,直到装满或者倒空

示例 1:

输入: jug1Capacity = 3, jug2Capacity = 5, targetCapacity = 4
输出: true
解释:来自著名的 “Die Hard”
示例 2:

输入: jug1Capacity = 2, jug2Capacity = 6, targetCapacity = 5
输出: false
示例 3:

输入: jug1Capacity = 1, jug2Capacity = 2, targetCapacity = 3
输出: true

提示:

1 <= jug1Capacity, jug2Capacity, targetCapacity <= 1e6

又是一种我没了解过的算法GCD(贝祖定理),看了题解了解一点后尝试了一下,并不难:

class Solution {
public:bool canMeasureWater(int x, int y, int z) {if (z == 0)return true;if (z < 0 || z > x + y)return false;int GCD = gcd(x, y);return !(z % GCD);}
};

514. 自由之路(Hard)

电子游戏“辐射4”中,任务 “通向自由” 要求玩家到达名为 “Freedom Trail Ring” 的金属表盘,并使用表盘拼写特定关键词才能开门。

给定一个字符串 ring ,表示刻在外环上的编码;给定另一个字符串 key ,表示需要拼写的关键词。您需要算出能够拼写关键词中所有字符的最少步数。

最初,ring 的第一个字符与 12:00 方向对齐。您需要顺时针或逆时针旋转 ring 以使 key 的一个字符在 12:00 方向对齐,然后按下中心按钮,以此逐个拼写完 key 中的所有字符。

旋转 ring 拼出 key 字符 key[i] 的阶段中:

您可以将 ring 顺时针或逆时针旋转 一个位置 ,计为1步。旋转的最终目的是将字符串 ring 的一个字符与 12:00 方向对齐,并且这个字符必须等于字符 key[i] 。
如果字符 key[i] 已经对齐到12:00方向,您需要按下中心按钮进行拼写,这也将算作 1 步。按完之后,您可以开始拼写 key 的下一个字符(下一阶段), 直至完成所有拼写。

示例 1:

在这里插入图片描述

输入: ring = “godding”, key = “gd”
输出: 4
解释:
对于 key 的第一个字符 ‘g’,已经在正确的位置, 我们只需要1步来拼写这个字符。
对于 key 的第二个字符 ‘d’,我们需要逆时针旋转 ring “godding” 2步使它变成 “ddinggo”。
当然, 我们还需要1步进行拼写。
因此最终的输出是 4。
示例 2:

输入: ring = “godding”, key = “godding”
输出: 13

提示:

1 <= ring.length, key.length <= 100
ring 和 key 只包含小写英文字母
保证 字符串 key 一定可以由字符串 ring 旋转拼出

DFS做法:

class Solution {
public:vector<vector<int>> memo;int findRotateSteps(string ring, string key) {memo.assign(ring.size(), vector<int>(key.size(), -1));return dfs(ring, 0, key, 0) + key.size();}int dfs(string ring, int i, string key, int j) {int n = ring.size(), m = key.size();if (j == key.size()) {return 0;}if (memo[i][j] != -1)return memo[i][j];int step = INT_MAX;for (int p = 0; p < ring.size(); p++) {if (ring[p] == key[j]) {step = min(step, dfs(ring, p, key, j + 1) +min(abs(p - i), n - abs(p - i)));}}memo[i][j] = step;return memo[i][j];}
};

题解中还有DP/BFS做法,可以了解一下:
两种 O(nm) 做法:DP / BFS

2808. 使循环数组所有元素相等的最少秒数

给你一个下标从 0 开始长度为 n 的数组 nums 。

每一秒,你可以对数组执行以下操作:

对于范围在 [0, n - 1] 内的每一个下标 i ,将 nums[i] 替换成 nums[i] ,nums[(i - 1 + n) % n] 或者 nums[(i + 1) % n] 三者之一。
注意,所有元素会被同时替换。

请你返回将数组 nums 中所有元素变成相等元素所需要的 最少 秒数。

示例 1:

输入:nums = [1,2,1,2]
输出:1
解释:我们可以在 1 秒内将数组变成相等元素:

  • 第 1 秒,将每个位置的元素分别变为 [nums[3],nums[1],nums[3],nums[3]] 。变化后,nums = [2,2,2,2] 。
    1 秒是将数组变成相等元素所需要的最少秒数。
    示例 2:

输入:nums = [2,1,3,3,2]
输出:2
解释:我们可以在 2 秒内将数组变成相等元素:

  • 第 1 秒,将每个位置的元素分别变为 [nums[0],nums[2],nums[2],nums[2],nums[3]] 。变化后,nums = [2,3,3,3,3] 。
  • 第 2 秒,将每个位置的元素分别变为 [nums[1],nums[1],nums[2],nums[3],nums[4]] 。变化后,nums = [3,3,3,3,3] 。
    2 秒是将数组变成相等元素所需要的最少秒数。
    示例 3:

输入:nums = [5,5,5,5]
输出:0
解释:不需要执行任何操作,因为一开始数组中的元素已经全部相等。

提示:

1 <= n == nums.length <= 1e5
1 <= nums[i] <= 1e9

哈希,看了题解后才有了比较清晰的思路,膜拜各路大佬orz:

class Solution {
public:int minimumSeconds(vector<int>& nums) {unordered_map<int, vector<int>> pos_hash;int n = nums.size();for (int i = 0; i < n; i++) {pos_hash[nums[i]].push_back(i);}int ans = INT_MAX;for (auto pair : pos_hash) {int tmp_max = 0;int m = pair.second.size();for (int j = 0; j < m; j++) {tmp_max =max(tmp_max,(pair.second[(j + 1) % m] - pair.second[j] + n) % n);}if (m == 1) {tmp_max = n;}ans = min(ans, tmp_max / 2);}return ans;}
};

哈希表 + 统计:正难则反——将元素改变转为元素扩散【图解】
这个题解比较清晰

2670. 找出不同元素数目差数组

给你一个下标从 0 开始的数组 nums ,数组长度为 n 。

nums 的 不同元素数目差 数组可以用一个长度为 n 的数组 diff 表示,其中 diff[i] 等于前缀 nums[0, …, i] 中不同元素的数目 减去 后缀 nums[i + 1, …, n - 1] 中不同元素的数目。

返回 nums 的 不同元素数目差 数组。

注意 nums[i, …, j] 表示 nums 的一个从下标 i 开始到下标 j 结束的子数组(包含下标 i 和 j 对应元素)。特别需要说明的是,如果 i > j ,则 nums[i, …, j] 表示一个空子数组。

示例 1:

输入:nums = [1,2,3,4,5]
输出:[-3,-1,1,3,5]
解释:
对于 i = 0,前缀中有 1 个不同的元素,而在后缀中有 4 个不同的元素。因此,diff[0] = 1 - 4 = -3 。
对于 i = 1,前缀中有 2 个不同的元素,而在后缀中有 3 个不同的元素。因此,diff[1] = 2 - 3 = -1 。
对于 i = 2,前缀中有 3 个不同的元素,而在后缀中有 2 个不同的元素。因此,diff[2] = 3 - 2 = 1 。
对于 i = 3,前缀中有 4 个不同的元素,而在后缀中有 1 个不同的元素。因此,diff[3] = 4 - 1 = 3 。
对于 i = 4,前缀中有 5 个不同的元素,而在后缀中有 0 个不同的元素。因此,diff[4] = 5 - 0 = 5 。
示例 2:

输入:nums = [3,2,3,4,2]
输出:[-2,-1,0,2,3]
解释:
对于 i = 0,前缀中有 1 个不同的元素,而在后缀中有 3 个不同的元素。因此,diff[0] = 1 - 3 = -2 。
对于 i = 1,前缀中有 2 个不同的元素,而在后缀中有 3 个不同的元素。因此,diff[1] = 2 - 3 = -1 。
对于 i = 2,前缀中有 2 个不同的元素,而在后缀中有 2 个不同的元素。因此,diff[2] = 2 - 2 = 0 。
对于 i = 3,前缀中有 3 个不同的元素,而在后缀中有 1 个不同的元素。因此,diff[3] = 3 - 1 = 2 。
对于 i = 4,前缀中有 3 个不同的元素,而在后缀中有 0 个不同的元素。因此,diff[4] = 3 - 0 = 3 。

提示:

1 <= n == nums.length <= 50
1 <= nums[i] <= 50

前后缀分解:

class Solution {
public:vector<int> distinctDifferenceArray(vector<int>& nums) {int n = nums.size(), suf[n + 1];suf[n] = 0;unordered_set<int> s;for (int i = n - 1; i; i--) {s.insert(nums[i]);suf[i] = s.size();}s.clear();vector<int> ans(n);for (int i = 0; i < n; i++) {s.insert(nums[i]);ans[i] = s.size() - suf[i + 1];}return ans;}
};

LCP 24. 数字游戏

小扣在秋日市集入口处发现了一个数字游戏。主办方共有 N 个计数器,计数器编号为 0 ~ N-1。每个计数器上分别显示了一个数字,小扣按计数器编号升序将所显示的数字记于数组 nums。每个计数器上有两个按钮,分别可以实现将显示数字加一或减一。小扣每一次操作可以选择一个计数器,按下加一或减一按钮。

主办方请小扣回答出一个长度为 N 的数组,第 i 个元素(0 <= i < N)表示将 0~i 号计数器 初始 所示数字操作成满足所有条件 nums[a]+1 == nums[a+1],(0 <= a < i) 的最小操作数。回答正确方可进入秋日市集。

由于答案可能很大,请将每个最小操作数对 1,000,000,007 取余。

示例 1:

输入:nums = [3,4,5,1,6,7]

输出:[0,0,0,5,6,7]

解释: i = 0,[3] 无需操作 i = 1,[3,4] 无需操作; i = 2,[3,4,5] 无需操作; i = 3,将 [3,4,5,1] 操作成 [3,4,5,6], 最少 5 次操作; i = 4,将 [3,4,5,1,6] 操作成 [3,4,5,6,7], 最少 6 次操作; i = 5,将 [3,4,5,1,6,7] 操作成 [3,4,5,6,7,8],最少 7 次操作; 返回 [0,0,0,5,6,7]。

示例 2:

输入:nums = [1,2,3,4,5]

输出:[0,0,0,0,0]

解释:对于任意计数器编号 i 都无需操作。

示例 3:

输入:nums = [1,1,1,2,3,4]

输出:[0,1,2,3,3,3]

解释: i = 0,无需操作; i = 1,将 [1,1] 操作成 [1,2] 或 [0,1] 最少 1 次操作; i = 2,将 [1,1,1] 操作成 [1,2,3] 或 [0,1,2],最少 2 次操作; i = 3,将 [1,1,1,2] 操作成 [1,2,3,4] 或 [0,1,2,3],最少 3 次操作; i = 4,将 [1,1,1,2,3] 操作成 [-1,0,1,2,3],最少 3 次操作; i = 5,将 [1,1,1,2,3,4] 操作成 [-1,0,1,2,3,4],最少 3 次操作; 返回 [0,1,2,3,3,3]。

提示:

1 <= nums.length <= 10^5
1 <= nums[i] <= 10^3

这个好难不会做…

参考灵神题解:

class Solution {
public:vector<int> numsGame(vector<int>& nums) {const int MOD = 1'000'000'007;vector<int> ans(nums.size());priority_queue<int> left; // 维护较小的一半,大根堆priority_queue<int, vector<int>, greater<int>>right; // 维护较大的一半,小根堆long long left_sum = 0, right_sum = 0;for (int i = 0; i < nums.size(); i++) {int b = nums[i] - i;if (i % 2 == 0) { // 前缀长度是奇数if (!left.empty() && b < left.top()) {left_sum -= left.top() - b;left.push(b);b = left.top();left.pop();}right_sum += b;right.push(b);ans[i] = (right_sum - right.top() - left_sum) % MOD;} else { // 前缀长度是偶数if (b > right.top()) {right_sum += b - right.top();right.push(b);b = right.top();right.pop();}left_sum += b;left.push(b);ans[i] = (right_sum - left_sum) % MOD;}}return ans;}
};

转换+中位数贪心+对顶堆

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/448426.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

从零搭建Vue3 + Typescript + Pinia + Vite + Tailwind CSS + Element Plus开发脚手架

项目代码以上传至码云&#xff0c;项目地址&#xff1a;https://gitee.com/breezefaith/vue-ts-scaffold 文章目录 前言脚手架技术栈简介vue3TypeScriptPiniaTailwind CSSElement Plusvite 详细步骤Node.js安装创建以 typescript 开发的vue3工程集成Pinia安装pinia修改main.ts创…

DockerCompose+SpringBoot+Nginx+Mysql实践

DockerComposeSpringBootNginxMysql实践 1、Spring Boot案例 首先我们先准备一个 Spring Boot 使用 Mysql 的小场景&#xff0c;我们做这样一个示例&#xff0c;使用 Spring Boot 做一个 Web 应 用&#xff0c;提供一个按照 IP 地址统计访问次数的方法&#xff0c;每次请求时…

企业中不同大数据迁移的区别是什么?

在大数据时代&#xff0c;企业面临着海量数据的管理、分析和应用挑战。为了克服数据存储、传输和处理中的难题&#xff0c;如数据量巨大、网络环境多变、存储成本高昂以及安全风险上升等&#xff0c;企业必须对数据进行备份、同步、分发或归档。这一过程中&#xff0c;数据的复…

前端换肤的五种思路和优缺点

一、什么是前端换肤 前端换肤是指在前端开发中&#xff0c;通过改变网页的样式来实现不同的主题或皮肤效果。通过换肤&#xff0c;可以改变网页的颜色、字体、背景等样式&#xff0c;以适应不同的用户喜好或实现特定的设计需求。 静态换肤&#xff1a; 是指在网页加载时&…

6、基于机器学习的预测

应用机器学习的任何预测任务与这四个策略。 文章目录 1、简介1.1定义预测任务1.2准备预测数据1.3多步预测策略1.3.1多输出模型1.3.2直接策略1.3.3递归策略1.3.4DirRec 策略2、流感趋势示例2.1多输出模型2.2直接策略1、简介 在第二课和第三课中,我们将预测视为一个简单的回归问…

安卓SurfaceTexture中updateTexImage使用及源码分析

文章目录 引言updateTexImage 简单使用SurfaceTexture 初始化相关源码分析Surface 绘制流程源码分析createBufferQueue 源码分析SurfaceTexture 之 updateTexImage 源码分析结尾 本文首发地址 https://h89.cn/archives/140.html 最新更新地址 https://gitee.com/chenjim/chenji…

Javaweb之SpringBootWeb案例之yml配置文件的详细解析

4.2 yml配置文件 前面我们一直使用springboot项目创建完毕后自带的application.properties进行属性的配置&#xff0c;那其实呢&#xff0c;在springboot项目当中是支持多种配置方式的&#xff0c;除了支持properties配置文件以外&#xff0c;还支持另外一种类型的配置文件&am…

你们看好鸿蒙开发嘛?反正我是看透了

前端也好Android、Java也罢。都逃不过市场的需求&#xff0c;岗位是市场需求决定的。现在的整个IT行情来看&#xff0c;互联网市场并不太好&#xff0c;所以如果要短时间内打破这一条例&#xff1b;那就是新型技术的突破。 鸿蒙的未来好不好&#xff0c;能不能入&#xff1f; …

店群如何防关联?抖音小店被限流怎么办?——站斧浏览器云桌面

无论是抖音小店店铺&#xff0c;还是其他店铺&#xff1b;使用相同法人、相同类目&#xff0c;多开都会被限流&#xff0c;甚至严重到全部店铺迟迟不出单。 下面小编根据不同情况给出解决方案&#xff1a; 1.不同法人、相同类目的情况 使用云服务器&#xff08;站斧云桌面&am…

【Java网络编程04】网络原理进阶(二)

1. 前言 在网络原理进阶&#xff08;一&#xff09;部分我们详细介绍了UDP/TCP两大协议及其相关特性&#xff0c;本章我们会讨论网络层、数据链路层、物理层相关协议。但是需要注意的是&#xff0c;如果有小伙伴们未来是想成为Java后端开发工程师的&#xff0c;那么未来工作中…

3D打印技术在建筑业中的潜力有哪些?HOOPS又是如何应用其中的?

近年来&#xff0c;3D打印技术以其独特的优势逐渐渗透到各行各业&#xff0c;而在建筑业中&#xff0c;其应用正呈现出巨大的潜力。本文将探讨3D打印技术在建筑领域中的各种可能性&#xff0c;同时关注于HOOPS在这一领域中的应用&#xff0c;如何推动和优化3D打印的实施。 一、…

Spring速成(一)

文章目录 Spring速成&#xff08;一&#xff09;1&#xff0c;课程介绍1.1 为什么要学?1.2 学什么?1.3 怎么学? 2&#xff0c;Spring相关概念2.1 初识Spring2.1.1 Spring家族2.1.2 了解Spring发展史 2.2 Spring系统架构2.2.1 系统架构图2.2.2 课程学习路线 2.3 Spring核心概…