Iceberg从入门到精通系列之二十三:Spark查询

Iceberg从入门到精通系列之二十三:Spark查询

  • 一、使用 SQL 查询
  • 二、使用 DataFrame 进行查询
  • 三、Time travel
  • 四.Incremental read
  • 五、检查表
  • 六、History
  • 七、元数据日志条目
  • 八、Snapshots
  • 九、Files
  • 十、Manifests
  • 十一、Partitions
  • 十二、所有元数据表
  • 十三、参考
  • 十四、使用元数据表进行时间旅行

要在 Spark 中使用 Iceberg,请首先配置 Spark 目录。 Iceberg 使用 Apache Spark 的 DataSourceV2 API 来实现数据源和目录。

一、使用 SQL 查询

在 Spark 3 中,表使用包含目录名称的标识符。

SELECT * FROM prod.db.table; -- catalog: prod, namespace: db, table: table

元数据表(例如历史记录和快照)可以使用 Iceberg 表名称作为命名空间。

例如,要从文件元数据表中读取 prod.db.table:

SELECT * FROM prod.db.table.files;

在这里插入图片描述

二、使用 DataFrame 进行查询

使用DataFrame进行查询

val df = spark.table("prod.db.table")

使用 DataFrameReader 的目录

路径和表名可以使用 Spark 的 DataFrameReader 接口加载。如何加载表取决于如何指定标识符。当使用spark.read.format(“iceberg”).load(table)或spark.table(table)时,表变量可以采用多种形式,如下所示:

  • file:///path/to/table:在给定路径加载 HadoopTable
  • tablename:加载currentCatalog.currentNamespace.tablename
  • Catalog.tablename:从指定目录加载表名。
  • namespace.tablename:从当前目录加载namespace.tablename
  • Catalog.namespace.tablename:从指定目录加载namespace.tablename。
  • namespace1.namespace2.tablename:从当前目录加载namespace1.namespace2.tablename

上面的列表是按优先顺序排列的。例如:匹配的目录将优先于任何名称空间解析。

三、Time travel

1.SQL
Spark 3.3 及更高版本支持使用 TIMESTAMP AS OF 或 VERSION AS OF 子句在 SQL 查询中进行时间旅行。 VERSION AS OF 子句可以包含长快照 ID 或字符串分支或标记名称。

注意:如果分支或标签的名称与快照 ID 相同,则选择进行时间旅行的快照是具有给定快照 ID 的快照。例如,考虑这样的情况:有一个名为“1”的标签,它引用 ID 为 2 的快照。如果版本旅行子句是 VERSION AS OF“1”,则将对 ID 为 1 的快照进行时间旅行。如果如果不需要,请使用明确定义的前缀(例如“snapshot-1”)重命名标记或分支。

-- time travel to October 26, 1986 at 01:21:00
SELECT * FROM prod.db.table TIMESTAMP AS OF '1986-10-26 01:21:00';-- time travel to snapshot with id 10963874102873L
SELECT * FROM prod.db.table VERSION AS OF 10963874102873;-- time travel to the head snapshot of audit-branch
SELECT * FROM prod.db.table VERSION AS OF 'audit-branch';-- time travel to the snapshot referenced by the tag historical-snapshot
SELECT * FROM prod.db.table VERSION AS OF 'historical-snapshot';

此外,还支持 FOR SYSTEM_TIME AS OF 和 FOR SYSTEM_VERSION AS OF 子句:

SELECT * FROM prod.db.table FOR SYSTEM_TIME AS OF '1986-10-26 01:21:00';
SELECT * FROM prod.db.table FOR SYSTEM_VERSION AS OF 10963874102873;
SELECT * FROM prod.db.table FOR SYSTEM_VERSION AS OF 'audit-branch';
SELECT * FROM prod.db.table FOR SYSTEM_VERSION AS OF 'historical-snapshot';

时间戳也可以作为 Unix 时间戳提供,以秒为单位:

-- timestamp in seconds
SELECT * FROM prod.db.table TIMESTAMP AS OF 499162860;
SELECT * FROM prod.db.table FOR SYSTEM_TIME AS OF 499162860;

2.DataFrame

要在 DataFrame API 中选择特定表快照或某个时间的快照,Iceberg 支持四种 Spark 读取选项:

  • snapshot-id 选择特定的表快照
  • as-of-timestamp 选择时间戳处的当前快照(以毫秒为单位)
  • 分支选择指定分支的头快照。请注意,当前分支不能与 as-of 时间戳组合。
  • tag 选择与指定标签关联的快照。标签不能与当前时间戳组合。
// time travel to October 26, 1986 at 01:21:00
spark.read.option("as-of-timestamp", "499162860000").format("iceberg").load("path/to/table")
// time travel to snapshot with ID 10963874102873L
spark.read.option("snapshot-id", 10963874102873L).format("iceberg").load("path/to/table")
// time travel to tag historical-snapshot
spark.read.option(SparkReadOptions.TAG, "historical-snapshot").format("iceberg").load("path/to/table")
// time travel to the head snapshot of audit-branch
spark.read.option(SparkReadOptions.BRANCH, "audit-branch").format("iceberg").load("path/to/table")

Spark 3.0及更早版本不支持在DataFrameReader命令中使用带表的选项。所有选项都将被默默忽略。尝试时间旅行或使用其他选项时请勿使用表格。请参阅 SPARK-32592。

四.Incremental read

要增量读取附加数据,请使用:

  • start-snapshot-id 增量扫描中使用的启动快照 ID(独占)。
  • end-snapshot-id 增量扫描(含)中使用的结束快照 ID。这是可选的。省略它将默认为当前快照。
// get the data added after start-snapshot-id (10963874102873L) until end-snapshot-id (63874143573109L)
spark.read().format("iceberg").option("start-snapshot-id", "10963874102873").option("end-snapshot-id", "63874143573109").load("path/to/table")

目前仅获取追加操作的数据。不支持替换、覆盖、删除操作。增量读取适用于 V1 和 V2 格式版本。 Spark的SQL语法不支持增量读取。

五、检查表

要检查表的历史记录、快照和其他元数据,Iceberg 支持元数据表。

元数据表通过在原表名后添加元数据表名来标识。例如,使用 db.table.history 读取 db.table 的历史记录。

对于 Spark 3(3.2 之前的版本),Spark 会话目录不支持具有多部分标识符的表名称,例如 Catalog.database.table.metadata。作为解决方法,请配置 org.apache.iceberg.spark.SparkCatalog,或使用 Spark DataFrameReader API。

六、History

显示表历史记录:

SELECT * FROM prod.db.table.history;

在这里插入图片描述

七、元数据日志条目

显示表元数据日志条目:

SELECT * from prod.db.table.metadata_log_entries;

在这里插入图片描述

八、Snapshots

显示表的有效快照:

SELECT * FROM prod.db.table.snapshots;

在这里插入图片描述
您还可以将快照加入表历史记录中。例如,此查询将显示表历史记录,以及写入每个快照的应用程序 ID:

selecth.made_current_at,s.operation,h.snapshot_id,h.is_current_ancestor,s.summary['spark.app.id']
from prod.db.table.history h
join prod.db.table.snapshots son h.snapshot_id = s.snapshot_id
order by made_current_at

在这里插入图片描述

九、Files

显示表的当前文件:

SELECT * FROM prod.db.table.files;

在这里插入图片描述
内容是指数据文件存储的内容类型: 0 数据 1 位置删除 2 相等删除

要仅显示数据文件或删除文件,请分别查询 prod.db.table.data_files 和 prod.db.table.delete_files。要显示所有跟踪快照中的所有文件、数据文件和删除文件,请分别查询 prod.db.table.all_files、prod.db.table.all_data_files 和 prod.db.table.all_delete_files。

十、Manifests

要显示表的当前文件清单:

SELECT * FROM prod.db.table.manifests;

在这里插入图片描述

  • 清单表的partition_summaries列中的字段对应于清单列表中的field_summary结构,顺序如下:
    • 包含空值
    • 包含_nan
    • 下界
    • 上限
  • contains_nan 可能返回 null,这表明该信息无法从文件的元数据中获得。当从 V1 表读取时,通常会发生这种情况,其中 contains_nan 未填充。

十一、Partitions

显示表的当前分区:

SELECT * FROM prod.db.table.partitions;

在这里插入图片描述

对于未分区表,分区表将不包含分区和spec_id字段。

分区元数据表显示当前快照中包含数据文件或删除文件的分区。但是,不应用删除文件,因此在某些情况下,即使分区的所有数据行都被删除文件标记为已删除,也可能会显示分区。

十二、所有元数据表

这些表是特定于当前快照的元数据表的并集,并返回所有快照的元数据。

“所有”元数据表可能会为每个数据文件或清单文件生成多于一行,因为元数据文件可能是多个表快照的一部分。

所有数据文件
要显示表的所有数据文件和每个文件的元数据:

SELECT * FROM prod.db.table.all_data_files;

在这里插入图片描述

All Manifests
要显示表的所有清单文件:

SELECT * FROM prod.db.table.all_manifests;

在这里插入图片描述
清单表的partition_summaries列中的字段对应于清单列表中的field_summary结构,顺序如下:

  • 包含空值
  • 包含_nan
  • 下界
  • 上限

contains_nan 可能返回 null,这表明该信息无法从文件的元数据中获得。当从 V1 表读取时,通常会发生这种情况,其中 contains_nan 未填充。

十三、参考

要显示表的已知快照引用:

SELECT * FROM prod.db.table.refs;

在这里插入图片描述
使用 DataFrame 检查
可以使用 DataFrameReader API 加载元数据表:

// named metastore table
spark.read.format("iceberg").load("db.table.files")
// Hadoop path table
spark.read.format("iceberg").load("hdfs://nn:8020/path/to/table#files")

十四、使用元数据表进行时间旅行

要使用时间旅行功能检查表的元数据:

-- get the table's file manifests at timestamp Sep 20, 2021 08:00:00
SELECT * FROM prod.db.table.manifests TIMESTAMP AS OF '2021-09-20 08:00:00';-- get the table's partitions with snapshot id 10963874102873L
SELECT * FROM prod.db.table.partitions VERSION AS OF 10963874102873;

还可以使用 DataFrameReader API 通过时间旅行来检查元数据表:

// load the table's file metadata at snapshot-id 10963874102873 as DataFrame
spark.read.format("iceberg").option("snapshot-id", 10963874102873L).load("db.table.files")

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/448624.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CSS要点总结

一、CSS 快速入门 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>css 快速入门</title><!-- 解读1. 在 head 标签内&#xff0c;出现了 <style type"text/css"></style…

华为通过流策略实现策略路由(重定向到不同的下一跳)

通过流策略实现策略路由&#xff08;重定向到不同的下一跳&#xff09; 组网图形 图1 配置策略路由组网图 策略路由简介配置注意事项组网需求配置思路操作步骤配置文件 策略路由简介 传统的路由转发原理是首先根据报文的目的地址查找路由表&#xff0c;然后进行报文转发。但…

Weblogic反序列化漏洞分析之CVE-2021-2394

目录 简介 前置知识 Serializable示例 Externalizable示例 联系weblogic ExternalizableLite接口 ExternalizableHelperl类 JdbcRowSetImpl类 MethodAttributeAccessor类 AbstractExtractor类 FilterExtractor类 TopNAggregator$PartialResult类 SortedBag$Wrappe…

python3支持在通过requests库调试django后台接口写测试用例

python测试用例库使用 unittest库可以支持单元测试用例编写和验证。 基本使用方法 运行文件可以将文件中的用例全部执行一遍 import unittestclass TestBasicFunc(unittest.TestCase):def test_basic_asert(self):self.assertEqual(1, 1)if __name__"__main__":u…

ESU毅速丨为什么增材制造广受关注?

随着科技的飞速发展&#xff0c;增材制造3D打印技术逐渐成为制造业的新宠。包括航空航天、汽车、家电、电子等各行业都在积极拥抱3D打印&#xff0c;为什么3D打印能引起制造业广泛关注与应用&#xff1f;它的主要优势有哪些&#xff1f; 首先&#xff0c;3D打印减少浪费。3D打印…

2001-2022年各省农产品进出口数据

2001-2022年各省农产品进出口数据 1、时间&#xff1a;2001-2022年 2、来源&#xff1a;商务部、农业年鉴 3、指标&#xff1a;年份、省份、农产品出口额&#xff08;亿元&#xff09;、农产品进口额&#xff08;亿元&#xff09;、农产品出口额&#xff08;万美元&#xff…

linux基础学习(9):用户与组

1.三个用户文件 1.1用户信息文件&#xff1a;/etc/passwd 打开这个文件后&#xff0c;可以看到系统内所有的用户的信息&#xff0c;其中每一行是一个用户 列数含义1用户名2 密码位。 x代表该用户有密码 3 用户uid。 超级用户为0&#xff08;就是root用户&#xff09;&#x…

LeetCode:206反转链表

206. 反转链表 - 力扣&#xff08;LeetCode&#xff09; 不难&#xff0c;小细节是单写一个循环&#xff0c;把特殊情况包含进去&#xff0c; 单链表核心&#xff1a;上一个结点&#xff0c;当前结点&#xff0c;下一个结点&#xff0c; 代码&#xff1a;注释&#xff08;算是…

AI数字人训练数据集汇总

唇读&#xff08;Lip Reading&#xff09;&#xff0c;也称视觉语音识别&#xff08;Visual Speech Recognition&#xff09;&#xff0c;通过说话者口 型变化信息推断其所说的内容&#xff0c;旨在利用视觉信道信息补充听觉信道信息&#xff0c;在现实生活中有重要应用。例如&…

Python学习03 -- 函数相关内容

1.def --- 这个是定义函数的关键字 \n --- 这个在print()函数中是换行符号 1.注意是x, 加个空格之后再y 1.形式参数数量是不受限制的&#xff08;参数间用&#xff0c;隔开&#xff09;&#xff0c;传实参给形参的时候要一一对应 返回值 --- 函数返还的结果捏 1.写None的时…

统计学-R语言-8.2

文章目录 前言双因子方差分析数学模型主效应分析交互效应分析正态性检验 绘制3个品种产量数据合并后的正态Q-Q图&#xff08;数据&#xff1a;example8_2&#xff09;练习 前言 本篇将继续介绍方差分析的知识。 双因子方差分析 考虑两个类别自变量对数值因变量影响的方差分析…

【Python】一个简单的小案例:实现批量修改图片格式

1.代码 import os from tkinter import Tk, Button from PIL import Imagedef check_and_create_folders():# 获取当前目录current_directory os.getcwd()# 定义文件夹名称folders_to_check ["JPG", "PNG"]for folder_name in folders_to_check:folder_…